Repository logo
 
Publication

A Quality of Recognition Case Study: Texture-based Segmentation and MRI Quality Assessment

dc.contributor.authorRodrigues, Rafael
dc.contributor.authorPinheiro, Antonio M. G.
dc.date.accessioned2021-02-04T17:24:36Z
dc.date.available2021-02-04T17:24:36Z
dc.date.issued2019-11-18
dc.description.abstractMuscle texture may be used as a descriptive feature for the segmentation of skeletal muscle in Magnetic Resonance Images (MRI). However, MRI acquisition is not always ideal and the texture richness might become compromised. Moreover, the research for the development of texture quality metrics, and particularly no-reference metrics, to be applied to the specific context of MRI is still in a very early stage. In this paper, a case study is established from a texture-based segmentation approach for skeletal muscle, which was tested in a thigh Dixon MRI database. Upon the obtained performance measures, the relation between objective image quality and the texture MRI richness is explored, considering a set of state-of-the-art no-reference image quality metrics. A discussion on the effectiveness of existing quality assessment methods in measuring MRI texture quality is carried out, based on Pearson and Spearman correlation outcomes.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.23919/EUSIPCO.2019.8902776pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/11096
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherEURASIPpt_PT
dc.relationTexture Analysis of Magnetic Resonance Images for Diagnosis and Monitoring of Neuromuscular Diseases
dc.relationInstituto de Telecomunicações
dc.relation.publisherversionhttps://www.eurasip.org/Proceedings/Eusipco/eusipco2019/Proceedings/papers/1570534133.pdfpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt_PT
dc.subjectMagnetic Resonance Imagingpt_PT
dc.subjectObjective Quality Assessmentpt_PT
dc.subjectQuality of Recognitionpt_PT
dc.subjectMRI Segmentationpt_PT
dc.titleA Quality of Recognition Case Study: Texture-based Segmentation and MRI Quality Assessmentpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleTexture Analysis of Magnetic Resonance Images for Diagnosis and Monitoring of Neuromuscular Diseases
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F130858%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50008%2F2019/PT
oaire.citation.conferencePlaceA Coruña, Spainpt_PT
oaire.citation.endPage5pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2019 27th European Signal Processing Conference (EUSIPCO)pt_PT
oaire.fundingStreamOE
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMendes Rodrigues
person.familyNamePinheiro
person.givenNameJorge Rafael
person.givenNameAntonio
person.identifier.ciencia-idD112-43CA-98E0
person.identifier.ciencia-id2218-265E-17D2
person.identifier.orcid0000-0002-9481-9601
person.identifier.orcid0000-0002-5968-9901
person.identifier.ridB-2723-2012
person.identifier.scopus-author-id8420644500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication16431ade-58b1-4db3-849b-718dd28e15bf
relation.isAuthorOfPublication94e6047a-198a-41bd-bd6c-b0f21708d8f9
relation.isAuthorOfPublication.latestForDiscovery16431ade-58b1-4db3-849b-718dd28e15bf
relation.isProjectOfPublication578a5e2d-cd15-45fe-8a4f-b0449117a64f
relation.isProjectOfPublication11e7de42-6a06-4bc8-99c3-ce68de57dbda
relation.isProjectOfPublication.latestForDiscovery11e7de42-6a06-4bc8-99c3-ce68de57dbda

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
EUSIPCO_2019___A_Quality_of_Recognition_Case_Study__Texture_based_Segmentation_and_MRI_Quality_Assessment.pdf
Size:
351.02 KB
Format:
Adobe Portable Document Format