| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| Documento em Acesso Embargado até dia 11-10-2027. Tente solicitar cópia ao autor carregando no ficheiro | 1.06 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Este trabalho foi desenvolvido no Ć¢mbito da unidade de investigação FibEnTec da Universidade da Beira Interior, tendo como objetivo fracionar a matĆ©ria orgĆ¢nica presente no efluente de uma agroindĆŗstria, atravĆ©s da aplicação sequencial de tecnologias de membranas com crescente seletividade: microfiltração (MF), ultrafiltração (UF) e nanofiltração (NF). Pretendeu-se nĆ£o só a caraterização detalhada das fraƧƵes obtidas, mas tambĆ©m a avaliação do seu potencial para serem usadas ou integradas em meios de cultura utilizados na produção de nanocelulose ou pigmentos bacterianos, com vista Ć produção de corantes. Adicionalmente, o remanescente da matĆ©ria orgĆ¢nica seria valorizado atravĆ©s da digestĆ£o anaeróbia, visando a produção de biogĆ”s e a consequente redução da carga poluente. A integração destas vertentes com a recuperação de Ć”gua para reutilização estabelece uma sinergia vantajosa, tanto do ponto de vista ambiental quanto económico. O presente trabalho concretizou o fracionamento molecular e caracterização de um efluente agroindustrial recorrendo a uma sequĆŖncia de membranas com seletividade crescente, iniciada com uma membrana de microfiltração, trĆŖs de ultrafiltração e terminada com uma membrana de nanofiltração. As fraƧƵes moleculares correspondem a dimensƵes >0,5 µm, 0,5 µm>100 kDa, 100 kDa>25 kDa, 25 kDa>5 kDa, 5 kDa>0,5 kDa e <0,5 kDa. As fraƧƵes moleculares produzidas e o efluente inicial foram caracterizados atravĆ©s de parĆ¢metros fĆsico-quĆmicos (pH, condutividade, sólidos totais), quantificação da matĆ©ria orgĆ¢nica presente (CQO e CBO) e azoto total e fósforo total. Cada etapa do fracionamento implicou a utilização de módulos de membrana na configuração enrolados em espiral. O desempenho após instalação dos módulos de membrana foi concretizado estabelecendo os valores de referĆŖncia da permeabilidade hidrĆ”ulica, necessĆ”rio na etapa de lavagem e recuperação do módulo concretizada após a operação, concretizada em modo de concentração. O balanƧo mĆ”ssico realizado determinou que o fator de redução de volume (FRV) variou ao longo das diferentes etapas do processo de filtração, atingindo o valor mĆ”ximo de 5,00 na etapa de ultrafiltração. Este fator reflete a relação entre o volume de efluente processado e o volume de concentrado recolhido, permitindo avaliar a eficiĆŖncia da separação de sólidos e matĆ©ria orgĆ¢nica em cada fase do processo. Ć medida que o FRV aumentava, verificouse uma concentração significativa de sólidos suspensos e dissolvidos nas fraƧƵes retidas, como demonstrado pelos elevados valores de CQO, que atingiram 23325 mg/L no concentrado da microfiltração, representando um aumento de 82% relativamente ao efluente bruto. No permeado da nanofiltração, o balanƧo mĆ”ssico indicou uma remoção eficaz da carga orgĆ¢nica e dos sólidos dissolvidos, com o CQO a ser reduzido para 756 mg/L, representando uma eficiĆŖncia de remoção de aproximadamente 94%.
This work was developed within the scope of the FibEnTec research unit at the University of Beira Interior, with the aim of fractionating the organic matter present in the effluent of an agro-industry through the sequential application of membrane technologies with increasing selectivity: microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF). The goal was not only to perform a detailed characterization of the obtained fractions but also to evaluate their potential to be used or integrated into culture media for the production of nanocellulose or bacterial pigments, aiming at dye production. Additionally, the remaining organic matter was intended to be valorized through anaerobic digestion, aiming at biogas production and the consequent reduction of the pollutant load. The integration of these approaches with water recovery for reuse establishes a beneficial synergy from both environmental and economic perspectives. The present work successfully carried out the molecular fractionation and characterization of an agro-industrial effluent using a sequence of membranes with increasing selectivity, starting with a microfiltration membrane (MF), three ultrafiltration membranes (UF), and ending with a nanofiltration membrane (NF). The molecular fractions correspond to the following sizes: >0.5 µm, 0.5 µm>100 kDa, 100 kDa>25 kDa, 25 kDa>5 kDa, 5 kDa>0.5 kDa, and <0.5 kDa. The produced molecular fractions and the initial effluent were characterized using physicochemical parameters (pH, conductivity, total solids), quantification of organic matter (COD and BOD), total nitrogen and total phosphorus. Each stage of fractionation involved the use of spiral-wound membrane modules. The performance after the installation of the membrane modules was established by determining the reference values of hydraulic permeability, which were necessary during the washing and recovery stages of the modules after the concentration operation. The mass balance determined that the volume reduction factor (VRF) varied throughout the different stages of the filtration process, reaching a maximum value of 5.00 during the ultrafiltration stage. This factor reflects the ratio between the volume of effluent processed and the volume of concentrate collected, allowing the efficiency of solid and organic matter separation to be assessed at each stage. As the VRF increased, a significant concentration of suspended and dissolved solids was observed in the retained fractions, as evidenced by the high COD values, which reached 23,325 mg/L in the microfiltration concentrate, representing an 82% increase compared to the raw effluent. In the nanofiltration permeate, the mass balance indicated an effective removal of organic load and dissolved solids, with COD being reduced to 756 mg/L, representing a removal efficiency of approximately 94%.
This work was developed within the scope of the FibEnTec research unit at the University of Beira Interior, with the aim of fractionating the organic matter present in the effluent of an agro-industry through the sequential application of membrane technologies with increasing selectivity: microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF). The goal was not only to perform a detailed characterization of the obtained fractions but also to evaluate their potential to be used or integrated into culture media for the production of nanocellulose or bacterial pigments, aiming at dye production. Additionally, the remaining organic matter was intended to be valorized through anaerobic digestion, aiming at biogas production and the consequent reduction of the pollutant load. The integration of these approaches with water recovery for reuse establishes a beneficial synergy from both environmental and economic perspectives. The present work successfully carried out the molecular fractionation and characterization of an agro-industrial effluent using a sequence of membranes with increasing selectivity, starting with a microfiltration membrane (MF), three ultrafiltration membranes (UF), and ending with a nanofiltration membrane (NF). The molecular fractions correspond to the following sizes: >0.5 µm, 0.5 µm>100 kDa, 100 kDa>25 kDa, 25 kDa>5 kDa, 5 kDa>0.5 kDa, and <0.5 kDa. The produced molecular fractions and the initial effluent were characterized using physicochemical parameters (pH, conductivity, total solids), quantification of organic matter (COD and BOD), total nitrogen and total phosphorus. Each stage of fractionation involved the use of spiral-wound membrane modules. The performance after the installation of the membrane modules was established by determining the reference values of hydraulic permeability, which were necessary during the washing and recovery stages of the modules after the concentration operation. The mass balance determined that the volume reduction factor (VRF) varied throughout the different stages of the filtration process, reaching a maximum value of 5.00 during the ultrafiltration stage. This factor reflects the ratio between the volume of effluent processed and the volume of concentrate collected, allowing the efficiency of solid and organic matter separation to be assessed at each stage. As the VRF increased, a significant concentration of suspended and dissolved solids was observed in the retained fractions, as evidenced by the high COD values, which reached 23,325 mg/L in the microfiltration concentrate, representing an 82% increase compared to the raw effluent. In the nanofiltration permeate, the mass balance indicated an effective removal of organic load and dissolved solids, with COD being reduced to 756 mg/L, representing a removal efficiency of approximately 94%.
Description
Keywords
Fracionamento Molecular Efluente Agro-Industrial Microfiltração Ultrafiltração Nanofiltração Molecular Fractionation Agro-Industrial Efluente Microfiltration Ultrafiltration Nanofiltration
