Repository logo
 
Publication

Injector Wall Heat Transfer Quantification in Supercritical Nitrogen Injection

dc.contributor.authorMagalhães, Leandro
dc.contributor.authorSilva, A. R. R.
dc.contributor.authorBarata, Jorge M M
dc.date.accessioned2023-01-03T15:02:30Z
dc.date.available2023-01-03T15:02:30Z
dc.date.issued2021-02-08
dc.description.abstractPressure and temperature increase in combustion chambers of Liquid Rocket Engines (LRE’s), while enhancing injection and combustion efficiencies, leads to both fuels and oxidizers to exceed their critical point conditions, entering the domain of supercritical fluid flows. Over the past 20 years, many physical models are developed for the simulation of supercritical nitrogen injection, which is validated with the experimental data from [1] and [2]. However, regardless of the sophistication employed in RANS, LES [3] or DNS-based [4] approaches, unrealistic top hat density profiles appear in the computations, which have in common the consideration of adiabatic injector walls. The present work has the objective of quantifying the influence of injector wall heat transfer for the considered experimental conditions, contributing for a more accurate representation of the physical phenomena in LRE's combustion chambers. For this purpose, a RANS-based approach is followed combining the accuracy of a multiparameter equation of state for nitrogen with an incompressible, but variable density approach description of the mixing conditions.Figure 1 depicts a comparison of the results obtained for the centerline density decay for case 4 from [1]. The injector diameter normalizes the axial distance from the injector. In this figure, the origin corresponds to the entrance of the combustion chamber. For the case of the adiabatic injector walls, it can be observed a potential core until x/D = 7.5, as opposed to what is depicted in the same figure for the experimental data. Experimentally no core is predicted, and the axial density starts to decrease as soon as the beginning of the combustion chamber. If, on the other hand, the isothermal injector is considered, it can be seen that no top hat profile appears, and the numerical results closely replicate the experimental behavior of the jet.It is shown that injector heat transfer phenomena actively changes the topology of the jet mixing, contributing to improved performance of numerical solvers.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationLeandro Magalhães, André Silva, Jorge Barata, "Injector Wall Heat Transfer Quantification in Supercritical Nitrogen Injection", Space Propulsion 2020 Conference, Estoril, Portugal, 08-12 february, 2021pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/12576
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAssociation Aéronautique et Astronautique de Francept_PT
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.relationalterado para: “Contribution to the Physical Understanding of Supercritical Fluid Flows: a Computational Perspective”. Computational methods for jet/spray characterization: transcritical and supercritical conditions
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLiquid Rocket Enginespt_PT
dc.subjectLREpt_PT
dc.subjectSupercritical conditionpt_PT
dc.subjectRANS-based approachpt_PT
dc.subjectMultiparameter equation of statept_PT
dc.subjectNotycompressible, but variable density approachpt_PT
dc.titleInjector Wall Heat Transfer Quantification in Supercritical Nitrogen Injectionpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardTitlealterado para: “Contribution to the Physical Understanding of Supercritical Fluid Flows: a Computational Perspective”. Computational methods for jet/spray characterization: transcritical and supercritical conditions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F136381%2F2018/PT
oaire.citation.conferencePlaceVirtual Conferencept_PT
oaire.citation.titleSpace Propulsion 2020 Conference, Estoril, Portugal, 08-12 fevereiro, 2021pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMagalhães
person.familyNameResende Rodrigues da Silva
person.familyNameMartins Barata
person.givenNameLeandro
person.givenNameAndré
person.givenNameJorge Manuel
person.identifier2611303
person.identifierJ-4185-2012
person.identifierhFY_5JYAAAAJ&hl
person.identifier.ciencia-id571C-5641-9D78
person.identifier.ciencia-id8219-4B2B-E1C7
person.identifier.ciencia-idF611-BBCC-DAA8
person.identifier.orcid0000-0002-1256-9689
person.identifier.orcid0000-0002-4901-7140
person.identifier.orcid0000-0001-9014-5008
person.identifier.scopus-author-id11440407500
person.identifier.scopus-author-id11439470600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationfd0c95ba-3a60-42d1-a382-f37a714962b9
relation.isAuthorOfPublication908e150d-3890-457c-b5da-09c84671cb93
relation.isAuthorOfPublicationc4346556-933d-4f70-9b6d-8e1670d57be6
relation.isAuthorOfPublication.latestForDiscoveryfd0c95ba-3a60-42d1-a382-f37a714962b9
relation.isProjectOfPublicationd3f48e72-49da-44e7-b054-cbdb0644e04d
relation.isProjectOfPublication85282b9c-1a98-4958-9e7f-e94c1835cadd
relation.isProjectOfPublication.latestForDiscoveryd3f48e72-49da-44e7-b054-cbdb0644e04d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Injector wall heat transfer quantification in supercritical nitrogen injection.pdf
Size:
508.81 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: