| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 15.82 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
In recent years, the number of satellites and debris in space has dangerously increased. For
this reason, it is indispensable that tracking and orbit prediction of these objects is performed
with the highest level of accuracy. Currently, orbit prediction depends on mathematical models that describe the physics behind the movement of a certain object in space. However, at
times, these models can limit the accuracy of the orbit prediction for being characterized by
a high degree of complexity and nonlinearity. On another note, the application of Machine
Learning to the space sector has been increasing rapidly, being of interest to investigate its
applicability in the field of orbit prediction. In the present dissertation, a Long ShortTerm
Memory (LSTM) neural network is designed and investigated. The obtained results are subsequently compared with the results obtained from an Extended Kalman Filter (EKF). With
data from a twoline element (TLE) file belonging to the satellite STARLINK1028, its orbit was propagated for 48h, producing 17281 state vectors that are utilized for training the
neural network. A second data set was generated, where Gaussian noise with a distribution
N(0, 100) was added. The purpose of this noisy data set is to represent the presence of errors caused by measurements and assess the robustness of the models. A neural network
was developed using the Python language and the Tensorflow and Keras libraries, following
a Multiple Inputs Single Output (MISO) approach. To test if the performance of the neural
network increases the more data is available for training, three case studies were developed,
where case studies A, B and C use 41.7%, 83.3% and 100% of the data set, respectively. The
models were validated using a pragmatic validation and the more common validation, where
it is shown that there are no signs of overfitting or underfitting. Results demonstrate that
the models are robust when faced with noisy data and their performance increases with the
size of the training set. However, despite the the neural network having been validated and
exhibits low prediction errors, the Kalman filter achieved a better performance.
Nos últimos anos, o número de satélites e lixo espacial tem aumentado perigosamente. Com isto, é indispensável que a localização e previsão de órbita destes objetos seja feita com o maior nível de precisão. Atualmente, a previsão de órbitas depende de modelos matemáticos que descrevem a física por detrás do movimento de certo objecto no espaço. Contudo, por vezes, estes modelos podem limitar a precisão da previsão de órbita por serem caracterizados por um alto grau de complexidade e não linearidade. Por outro lado, a aplicação de Machine Learning no setor espacial tem vindo a aumentar rapidamente, sendo de interesse investigar a sua aplicabilidade na área de previsão de órbitas. Na presente dissertação, uma rede neuronal Long ShortTerm Memory (LSTM) é projetada e investigada. Os resultados obtidos são posteriormente comparados com os resultados obtidos por um filtro de Kalman Extendido (EKF). Com recurso a dados provenientes de um ficheiro twoline element (TLE) referente ao satélite STARLINK1028, a órbita deste foi propagada durante 48h, produzindo 17281 vetores de estado que são utilizados para treinar a rede neuronal. Um segundo data set foi gerado, onde ruído gaussiano com uma distribuição N(0, 100)foi adicionado. O propósito deste data set ruidoso é de retratar a presença de erros causados pelas medições e avaliar a robustez dos modelos. A rede neuronal foi desenvolvida com recurso à linguagem Python e às bibliotecas Tensorflow e Keras, tendo sido tomada uma abordagem Multiple Inputs Single Output (MISO). De forma a testar se a performance da rede neuronal aumenta consoante o aumento de dados disponíveis para treino, 3 casos de estudo foram criados, onde os casos de estudo A, B e C usam 41.7%, 83.3% e 100% do data set, respetivamente. Os modelos foram validados utilizando uma validação pragmática e a validação mais comum, onde se demonstra que não há sinais de overfitting ou underfitting. Resultados demonstram que os modelos são robustos face a dados ruidosos e a performance destes aumenta com o tamanho do training set. Contudo, apesar da rede neuronal ter sido validada e possuir baixos erros de previsão, o filtro de Kalman atingiu uma melhor performance.
Nos últimos anos, o número de satélites e lixo espacial tem aumentado perigosamente. Com isto, é indispensável que a localização e previsão de órbita destes objetos seja feita com o maior nível de precisão. Atualmente, a previsão de órbitas depende de modelos matemáticos que descrevem a física por detrás do movimento de certo objecto no espaço. Contudo, por vezes, estes modelos podem limitar a precisão da previsão de órbita por serem caracterizados por um alto grau de complexidade e não linearidade. Por outro lado, a aplicação de Machine Learning no setor espacial tem vindo a aumentar rapidamente, sendo de interesse investigar a sua aplicabilidade na área de previsão de órbitas. Na presente dissertação, uma rede neuronal Long ShortTerm Memory (LSTM) é projetada e investigada. Os resultados obtidos são posteriormente comparados com os resultados obtidos por um filtro de Kalman Extendido (EKF). Com recurso a dados provenientes de um ficheiro twoline element (TLE) referente ao satélite STARLINK1028, a órbita deste foi propagada durante 48h, produzindo 17281 vetores de estado que são utilizados para treinar a rede neuronal. Um segundo data set foi gerado, onde ruído gaussiano com uma distribuição N(0, 100)foi adicionado. O propósito deste data set ruidoso é de retratar a presença de erros causados pelas medições e avaliar a robustez dos modelos. A rede neuronal foi desenvolvida com recurso à linguagem Python e às bibliotecas Tensorflow e Keras, tendo sido tomada uma abordagem Multiple Inputs Single Output (MISO). De forma a testar se a performance da rede neuronal aumenta consoante o aumento de dados disponíveis para treino, 3 casos de estudo foram criados, onde os casos de estudo A, B e C usam 41.7%, 83.3% e 100% do data set, respetivamente. Os modelos foram validados utilizando uma validação pragmática e a validação mais comum, onde se demonstra que não há sinais de overfitting ou underfitting. Resultados demonstram que os modelos são robustos face a dados ruidosos e a performance destes aumenta com o tamanho do training set. Contudo, apesar da rede neuronal ter sido validada e possuir baixos erros de previsão, o filtro de Kalman atingiu uma melhor performance.
Description
Keywords
Deep Learning Filtro de Kalman Filtro de Kalman Extendido Long Shortterm Memory Machine Learning Mecânica Orbital Previsão de Órbita Propagação de Órbita Rede Neuronal Satélite Leo
