Repository logo
 
Publication

Automated and Intelligent Inspection of Airport Pavements: A Systematic Review of Methods, Accuracy and Validation Challenges

datacite.subject.fosEngenharia e Tecnologia::Engenharia Civil
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorFeitosa, Ianca
dc.contributor.authorSantos, Bertha
dc.contributor.authorAlmeida, Pedro G.
dc.contributor.editormdpi
dc.date.accessioned2026-01-13T12:29:46Z
dc.date.available2026-01-13T12:29:46Z
dc.date.issued2025-12-01
dc.description.abstractAirport pavement condition assessment plays a critical role in ensuring operational safety, surface functionality, and long-term infrastructure sustainability. Traditional visual inspection methods, although widely used, are increasingly challenged by limitations in accuracy, subjectivity, and scalability. In response, the field has seen a growing adoption of automated and intelligent inspection technologies, incorporating tools such as unmanned aerial vehicles (UAVs), Laser Crack Measurement Systems (LCMS), and machine learning algorithms. This systematic review aims to identify, categorize, and analyze the main technological approaches applied to functional pavement inspections, with a particular focus on surface distress detection. The study examines data collection techniques, processing methods, and validation procedures used in assessing both flexible and rigid airport pavements. Special emphasis is placed on the precision, applicability, and robustness of automated systems in comparison to traditional approaches. The reviewed literature reveals a consistent trend toward greater accuracy and efficiency in systems that integrate deep learning, photogrammetry, and predictive modeling. However, the absence of standardized validation protocols and statistically robust datasets continues to hinder comparability and broader implementation. By mapping existing technologies, identifying methodological gaps, and proposing strategic research directions, this review provides a comprehensive foundation for the development of scalable, data-driven airport pavement management systems.eng
dc.identifier.citationFeitosa, I.; Santos, B.; Almeida, P.G. Automated and Intelligent Inspection of Airport Pavements: A Systematic Review of Methods, Accuracy and Validation Challenges. Future Transp. 2025, 5, 183. https://doi.org/10.3390/ futuretransp5040183
dc.identifier.doihttps://doi.org/10.3390/ futuretransp5040183
dc.identifier.issn26737590
dc.identifier.urihttp://hdl.handle.net/10400.6/19653
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationGeoBioSciences, GeoTechnologies and GeoEngineering
dc.relation.hasversionhttps://www.mdpi.com/2673-7590/5/4/183
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAirport pavement inspection
dc.subjectFunctional condition
dc.subjectAutomated distress detection
dc.subjectMachine learning
dc.subjectBig data
dc.subjectUnmanned aerial vehicles (UAVs)
dc.subjectVehicle-inspection systems
dc.titleAutomated and Intelligent Inspection of Airport Pavements: A Systematic Review of Methods, Accuracy and Validation Challengeseng
dc.title.alternativeeng
dc.typereview article
dspace.entity.typePublication
oaire.awardTitleGeoBioSciences, GeoTechnologies and GeoEngineering
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FGEO%2F04035%2F2019/PT
oaire.citation.issue183
oaire.citation.titleFuture Transportation
oaire.citation.volume5
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFeitosa
person.familyNameSantos
person.familyNameAlmeida
person.givenNameIanca Teixeira
person.givenNameBertha
person.givenNamePedro Gabriel de Faria Lapa Barbosa de
person.identifier.ciencia-id1C10-F48D-7D62
person.identifier.ciencia-idBE1A-879F-8282
person.identifier.ciencia-id1117-C2D6-DA23
person.identifier.gsidhttps://scholar.google.com/citations?hl=pt-PT&user=fT4epqoAAAAJ&view_op=list_works&gmla=AJsN-F49YilrVrR1x3XfnxomUHOOds5xfSaEJcdYUYwMOnOckQIAPlvQjUk__OStefVY8nSN-IBGIoFeyXBKhdGQa8S1VWxCUji8MA8KS27qBTI8XcG9IDE
person.identifier.orcid0000-0002-6060-8128
person.identifier.orcid0000-0002-5545-892X
person.identifier.orcid0000-0003-2810-5966
person.identifier.scopus-author-id57218645977
person.identifier.scopus-author-id54880406000
person.identifier.scopus-author-id12796214600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationa800c805-51e4-4fbc-ba1a-6c50b4abd1ae
relation.isAuthorOfPublication444d1a96-ae0d-4778-93d1-8fcbf30ec96a
relation.isAuthorOfPublication85505118-2edc-4904-b2d3-5dde015a90dd
relation.isAuthorOfPublication.latestForDiscoverya800c805-51e4-4fbc-ba1a-6c50b4abd1ae
relation.isProjectOfPublication542e5626-1cd0-43f1-8174-bc08e1d6901f
relation.isProjectOfPublication.latestForDiscovery542e5626-1cd0-43f1-8174-bc08e1d6901f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
futuretransp-05-00183-v2.pdf
Size:
3.29 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: