Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.94 MB | Unknown |
Authors
Advisor(s)
Abstract(s)
A extração de energia a partir da luz solar é uma forma promissora de resolver a crise
energética, as mudanças climáticas bem como a descarbonização. A energia solar tem
atraído atenção e ajudado muito na diversificação das fontes de geração de energia,
devido as suas características de desenvolvimento de energia limpa e sustentável. Os
sistemas solares fotovoltaicos e térmicos são duas tecnologias que permitem a conversão
direta da energia solar em energia elétrica e térmica. Neste trabalho de dissertação
pretende-se aumentar o rendimento de um painel fotovoltaico, simultaneamente
incrementar a potência elétrica com a cogeração de módulos termoelétricos, e fazer uma
recuperação térmica do calor dissipado pelo painel fotovoltaico. Este trabalho teve como
foco a reconstrução e alterações necessárias de um módulo solar híbrido PV-TEG-T já
existente com o objetivo de otimizar o sistema e aumentar a potência gerada, a partir de
uma avaliação experimental do módulo. Este módulo consiste em três componentes
principais a saber, um modulo fotovoltaico, um modulo termoelétrico e um permutador
de calor para o aproveitamento solar térmico. O acoplamento foi feito, colocando o
modulo termoelétrico constituído por 16 células de Peltier na parte traseira do painel, e
o permutador de calor em contacto com a parte fria do modulo termoelétrico. De modo
que o conjunto termoelétrico gere energia elétrica adicional, e o permutador de calor faça
um aproveitamento térmico a partir de um fluido (água). Com esta combinação
pretende-se não apenas aumentar a produção elétrica e térmica do modulo solar híbrido,
mas também melhorar a eficiência de produção dos módulos fotovoltaicos a partir do
arrefecimento dos mesmos com o fluido utilizado (água). Assim, durante a realização
experimental foram registadas não apenas as grandezas elétricas, como correntes e
tensões, mas também grandezas como a temperatura que todo módulo estava sujeito,
como é o caso da temperatura frontal do painel fotovoltaico, temperatura entre o modulo
termoelétrico e o fotovoltaico, temperatura entre o permutador de calor e o conjunto
termoelétrico, assim como as temperaturas de entrada e saída da água do permutador de
calor. Também durante os testes práticos foi registado constantemente o valor da
intensidade da radiação solar que atingia o módulo fotovoltaico. De uma forma
comparativa para se verificar a melhoria nos valores da temperatura e do calor dissipado
pelo módulo fotovoltaico problema do aumento da temperatura dos módulos
fotovoltaicos, também foram realizados testes com um módulo fotovoltaico
convencional, sujeito à mesma radiação solar que o módulo híbrido.
Harnessing energy from sunlight is a promising way to address the energy crisis, climate change, and decarbonization. Solar energy has garnered attention and greatly aided in diversifying energy generation sources due to its clean and sustainable energy development characteristics. Photovoltaic and thermal solar systems are two technologies that allow for the direct conversion of solar energy into electric and thermal energy. This dissertation aims to increase the efficiency of a photovoltaic panel, simultaneously boosting electrical power with the cogeneration of thermoelectric modules, and recovering the heat dissipated by the photovoltaic panel. The focus of this work was on reconstructing and making the necessary changes to an existing PV-TEG-T hybrid solar module with the aim of optimizing the system and increasing the power generated based on an experimental evaluation of the module. This module consists of three main components: a photovoltaic module, a thermoelectric module, and a heat exchanger for solar thermal utilization. The coupling was done by placing the thermoelectric module, composed of 16 Peltier cells, at the back of the panel, with the heat exchanger in contact with the cold side of the thermoelectric module. This setup is designed so that the thermoelectric set generates additional electric energy, and the heat exchanger utilizes the thermal energy using a fluid (water). With this combination, the goal is not only to increase the electrical and thermal production of the hybrid solar module but also to enhance the efficiency of the photovoltaic modules by cooling them with the fluid used (water). Thus, during the experimental phase, not only were electrical metrics like currents and voltages recorded, but also variables such as the temperature each module was subjected to, like the front temperature of the photovoltaic panel, the temperature between the thermoelectric and photovoltaic module, the temperature between the heat exchanger and the thermoelectric set, as well as the inlet and outlet temperatures of the water from the heat exchanger. Also, during the practical tests, the intensity of solar radiation hitting the photovoltaic module was continuously recorded. Comparatively, to check the improvement in temperature values and heat dissipated by the photovoltaic module due to the issue of increasing temperatures in photovoltaic modules, tests were also conducted with a conventional photovoltaic module, exposed to the same solar radiation as the hybrid module.
Harnessing energy from sunlight is a promising way to address the energy crisis, climate change, and decarbonization. Solar energy has garnered attention and greatly aided in diversifying energy generation sources due to its clean and sustainable energy development characteristics. Photovoltaic and thermal solar systems are two technologies that allow for the direct conversion of solar energy into electric and thermal energy. This dissertation aims to increase the efficiency of a photovoltaic panel, simultaneously boosting electrical power with the cogeneration of thermoelectric modules, and recovering the heat dissipated by the photovoltaic panel. The focus of this work was on reconstructing and making the necessary changes to an existing PV-TEG-T hybrid solar module with the aim of optimizing the system and increasing the power generated based on an experimental evaluation of the module. This module consists of three main components: a photovoltaic module, a thermoelectric module, and a heat exchanger for solar thermal utilization. The coupling was done by placing the thermoelectric module, composed of 16 Peltier cells, at the back of the panel, with the heat exchanger in contact with the cold side of the thermoelectric module. This setup is designed so that the thermoelectric set generates additional electric energy, and the heat exchanger utilizes the thermal energy using a fluid (water). With this combination, the goal is not only to increase the electrical and thermal production of the hybrid solar module but also to enhance the efficiency of the photovoltaic modules by cooling them with the fluid used (water). Thus, during the experimental phase, not only were electrical metrics like currents and voltages recorded, but also variables such as the temperature each module was subjected to, like the front temperature of the photovoltaic panel, the temperature between the thermoelectric and photovoltaic module, the temperature between the heat exchanger and the thermoelectric set, as well as the inlet and outlet temperatures of the water from the heat exchanger. Also, during the practical tests, the intensity of solar radiation hitting the photovoltaic module was continuously recorded. Comparatively, to check the improvement in temperature values and heat dissipated by the photovoltaic module due to the issue of increasing temperatures in photovoltaic modules, tests were also conducted with a conventional photovoltaic module, exposed to the same solar radiation as the hybrid module.
Description
Keywords
Conjunto Termoelétrico Energia Solar Energia Térmica Módulo
Solar Híbrido Módulo Fotovoltaico