Publication
Balanced prime basis factorial fixed effects model with random number of observations
dc.contributor.author | Oliveira, Sandra | |
dc.contributor.author | Nunes, Célia | |
dc.contributor.author | Moreira, Elsa | |
dc.contributor.author | Fonseca, Miguel | |
dc.contributor.author | Mexia, João T. | |
dc.date.accessioned | 2020-02-19T14:41:48Z | |
dc.date.available | 2020-02-19T14:41:48Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Factorial designs are in general more efficient for experiments that involve the study of the effects of two or more factors. In this paper we consider a p^U factorial model with U factors, each one having a p prime number of levels. We consider a balanced (r replicates per treatment) prime factorial with fixed effects. Our goal is to extend these models to the case where it is not possible to known in advance the number of treatments replicates, r. In these situations is more appropriate to consider r as a realization of a random variable R, which will be assumed to be geometrically distributed. The proposed approach is illustrated through an application considering simulated data. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1080/02664763.2019.1679097 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.6/9371 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation | Center of Mathematics and Applications of University of Beira Interior | |
dc.relation | Center for Mathematics and Applications | |
dc.subject | Random number of replicates | pt_PT |
dc.subject | Factorial designs | pt_PT |
dc.subject | Fixed effects model | pt_PT |
dc.subject | F distribution | pt_PT |
dc.title | Balanced prime basis factorial fixed effects model with random number of observations | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center of Mathematics and Applications of University of Beira Interior | |
oaire.awardTitle | Center for Mathematics and Applications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00212%2F2019/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00297%2F2019/PT | |
oaire.citation.endPage | 12 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | Journal of Applied Statistics | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Nunes | |
person.familyName | Moreira | |
person.familyName | Mexia | |
person.givenName | Célia | |
person.givenName | Elsa | |
person.givenName | João | |
person.identifier | R-000-3NA | |
person.identifier | R-000-7FX | |
person.identifier.ciencia-id | AC1F-3CA0-75FE | |
person.identifier.ciencia-id | 0A1B-09AC-0E39 | |
person.identifier.orcid | 0000-0003-0167-4851 | |
person.identifier.orcid | 0000-0002-7509-115X | |
person.identifier.orcid | 0000-0001-8620-0721 | |
person.identifier.rid | H-1231-2016 | |
person.identifier.scopus-author-id | 57194580125 | |
person.identifier.scopus-author-id | 6603673040 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.embargofct | Restrições editoriais. | pt_PT |
rcaap.rights | closedAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 6c089279-689d-4566-b2ee-797ddbefbeab | |
relation.isAuthorOfPublication | e713ce3c-6eb7-439d-a153-ab3ee65e57e7 | |
relation.isAuthorOfPublication | 3579587b-b3c6-4af2-94fb-a9304279ac94 | |
relation.isAuthorOfPublication.latestForDiscovery | 3579587b-b3c6-4af2-94fb-a9304279ac94 | |
relation.isProjectOfPublication | 0172bb95-0a5d-4253-a9a5-4456f99a1620 | |
relation.isProjectOfPublication | 44eff387-fba8-4108-9202-6314d0483790 | |
relation.isProjectOfPublication.latestForDiscovery | 0172bb95-0a5d-4253-a9a5-4456f99a1620 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 3_Balanced prime basis factorial fixed effects model.pdf
- Size:
- 1.09 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: