Repository logo
 
Publication

Clustering of high values in random fields

dc.contributor.authorPereira, L.
dc.contributor.authorMartins, Ana Paula
dc.contributor.authorFerreira, Helena
dc.date.accessioned2020-01-09T14:42:08Z
dc.date.available2020-01-09T14:42:08Z
dc.date.issued2017
dc.description.abstractThe asymptotic results that underlie applications of extreme random fields often assume that the variables are located on a regular discrete grid, identified with Z2, and that they satisfy stationarity and isotropy conditions. Here we extend the existing theory, concerning the asymptotic behavior of the maximum and the extremal index, to non-stationary and anisotropic random fields, defined over discrete subsets of R2.We show that, under a suitable coordinatewise mixing condition, the maximum may be regarded as the maximum of an approximately independent sequence of submaxima, although there may be high local dependence leading to clustering of high values. Under restrictions on the local path behavior of high values, criteria are given for the existence and value of the spatial extremal index which plays a key role in determining the cluster sizes and quantifying the strength of dependence between exceedances of high levels. The general theory is applied to the class of max-stable random fields, for which the extremal index is obtained as a function of well-known tail dependence measures found in the literature, leading to a simple estimation method for this parameter. The results are illustrated with non-stationary Gaussian and 1-dependent random fields. For the latter, a simulation and estimation study is performed.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/s10687-017-0291-7pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/8165
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectRandom fieldpt_PT
dc.subjectMax-stable processpt_PT
dc.subjectExtremal dependencept_PT
dc.subjectSpatial extremal indexpt_PT
dc.titleClustering of high values in random fieldspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage838pt_PT
oaire.citation.issue4pt_PT
oaire.citation.startPage807pt_PT
oaire.citation.volume20pt_PT
person.familyNamePereira
person.familyNameANDRÉ MARTINS FERNANDES
person.familyNameFerreira
person.givenNameLuísa
person.givenNameANA PAULA
person.givenNameHelena
person.identifier.ciencia-id4F15-1868-D001
person.identifier.ciencia-idC51F-68CB-1DE2
person.identifier.ciencia-id7C10-8C72-313B
person.identifier.orcid0000-0002-9068-4607
person.identifier.orcid0000-0002-3908-821X
person.identifier.orcid0000-0001-9392-7259
person.identifier.scopus-author-id10839238300
person.identifier.scopus-author-id7101834831
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication604e508e-9f4e-4950-b2a4-1b06c7192afe
relation.isAuthorOfPublicationd55f0044-b7a4-41b1-9ca2-7e97eaa0ed0f
relation.isAuthorOfPublication0df8a302-97a1-4166-aba4-2a399c8ad078
relation.isAuthorOfPublication.latestForDiscovery604e508e-9f4e-4950-b2a4-1b06c7192afe

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Pereira2017_Article_ClusteringOfHighValuesInRandom.pdf
Size:
1 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: