Repository logo
 
Publication

Ergonomic Risk Minimization in the Portuguese Wine Industry: A Task Scheduling Optimization Method Based on the Ant Colony Optimization Algorithm

dc.contributor.authorFreitas, António A.
dc.contributor.authorLima, Tânia M.
dc.contributor.authorGaspar, Pedro Dinis
dc.date.accessioned2024-01-26T11:32:48Z
dc.date.available2024-01-26T11:32:48Z
dc.date.issued2022
dc.description.abstractIn the wine industry, task planning is based on decision-making processes that are influenced by technical and organizational constraints as well as regulatory limitations. A characteristic constraint inherent to this sector concerns occupational risks, in which companies must reduce and mitigate work-related accidents, resulting in lower operating costs and a gain in human, financial, and material efficiency. This work proposes a task scheduling optimization model using a methodology based on the ant colony optimization approach to mitigate the ergonomic risks identified in general winery production processes by estimating the metabolic energy expenditure during the execution of tasks. The results show that the tasks were reorganized according to their degree of ergonomic risk, preserving an acceptable priority sequence of tasks with operational affinity and satisfactory efficiency from the point of view of the operationalization of processes, while the potential ergonomic risks are simultaneously minimized by the rotation and alternation of operative teams between those tasks with higher and lower values of metabolic energy required. We also verified that tasks with lower ergonomic-load requirements influence the reorganization of the task sequence by lowering the overall value of metabolic energy, which is reflected in the reduction of the ergonomic load.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citation: Freitas, A.A.; Lima, T.M.; Gaspar, P.D. Ergonomic Risk Minimization in the Portuguese Wine Industry: A Task Scheduling Optimization Method Based on the Ant Colony Optimization Algorithm. Processes 2022, 10, 1364. https:// doi.org/10.3390/pr10071364pt_PT
dc.identifier.doi10.3390/pr10071364pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/14169
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationCentre for Mechanical and Aerospace Science and Technologies
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAnt colony optimizationpt_PT
dc.subjectRisk assessmentpt_PT
dc.subjectOptimization modelpt_PT
dc.subjectTask planningpt_PT
dc.subjectMetabolic energy expenditurept_PT
dc.subjectWinerypt_PT
dc.titleErgonomic Risk Minimization in the Portuguese Wine Industry: A Task Scheduling Optimization Method Based on the Ant Colony Optimization Algorithmpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre for Mechanical and Aerospace Science and Technologies
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00151%2F2020/PT
oaire.citation.issue7pt_PT
oaire.citation.startPage1364pt_PT
oaire.citation.titleProcessespt_PT
oaire.citation.volume10pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFreitas
person.familyNameLima
person.familyNameGaspar
person.givenNameAntonio
person.givenNameTânia
person.givenNamePedro Dinis
person.identifier2132873
person.identifier1710267
person.identifier.ciencia-id301D-FB40-85C7
person.identifier.ciencia-id771E-3B60-A936
person.identifier.ciencia-id6111-9F05-2916
person.identifier.orcid0000-0002-7422-3763
person.identifier.orcid0000-0002-7540-3854
person.identifier.orcid0000-0003-1691-1709
person.identifier.ridV-5052-2017
person.identifier.ridN-3016-2013
person.identifier.scopus-author-id48661120000
person.identifier.scopus-author-id57419570900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication3b92b8c2-d223-4bd5-92c3-f558eb6f8f1c
relation.isAuthorOfPublicationef58bc1e-8e06-46cc-93e3-bba8e6ed8388
relation.isAuthorOfPublicationb69e2ba0-43af-4cf7-873e-090fd9fc6c94
relation.isAuthorOfPublication.latestForDiscovery3b92b8c2-d223-4bd5-92c3-f558eb6f8f1c
relation.isProjectOfPublicationc1aeadcb-d7fa-4d70-959a-2447dc0b2276
relation.isProjectOfPublication.latestForDiscoveryc1aeadcb-d7fa-4d70-959a-2447dc0b2276

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RI24.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: