Name: | Description: | Size: | Format: | |
---|---|---|---|---|
34.32 MB | Adobe PDF |
Abstract(s)
The aim of this thesis is to investigate and develop different numerical methodologies for
modeling the Dielectric Barrier discharge (DBD) plasma actuators for flow control purposes.
Two different modeling approaches were considered; one based on Plasma-fluid model and
the other based on a phenomenological model.
A three component Plasma fluid model based on the transport equations of charged particles
was implemented in this thesis in OpenFOAM, using several techniques to reduce the
numerical issues. The coupled plasma-fluid problem involves wide range of length and time
scales which make the numerical simulation difficult. Therefore, to obtain stable and
accurate results in a reasonable computational run time, several numerical procedures were
implemented including: semi-implicit treatment of coupling of Poisson equation and charge
density equation, super-time-stepping and operator splitting algorithm.
We examined our code for a constant positive voltage, testing for the dependency of the
behavior of the current density to the selected numerical scheme. In addition, although there
is no clear numerical or experimental benchmark case for DBD plasma actuator problem, the
developed plasma solver was compared quantitively and qualitively with several numerical
works in the literature. Afterward, the developed numerical methodology was used to explore
the possibility of influencing the flow, with higher speed, using nano-second (NS) pulsed DBD
plasma actuator. Therefore, the interaction of the transonic flow and actuation effects of
DBD plasma actuator with nano second pulsed voltage was simulated. The effect of gas
heating and body force was calculated by the plasma solver and was supplied into the gas
dynamic solver for simulating the flow field. Moreover, the results of the plasma fluid model
were used to develop an energy deposition model. It was shown that the energy deposition
model is able to capture the main features of the effect of NS DBD plasma actuators
correctly, with less computational time. It was also shown that fast energy transfer, from
plasma to fluid, leads to the formation of micro-shock waves that modify locally the features
of the transonic flow.
Although the numerical efficiency of the plasma fluid model was improved, the computational
cost of simulating the effect of DBD plasma actuator on a real scale flow situation was still
high. Therefore, a simple model for plasma discharge and its effect on the flow was
developed based on scaling of the thrust generated by DBD plasma actuators. The scaled
thrust model correctly predicts the nonlinear dependency of the thrust produced and the
applied voltage. These scales were then introduced into a simple phenomenological model to
estimate and simulate the body force distribution generated by the plasma actuator.
Although the model includes some experimental correlations, it does not need any fitting
parameter. The model was validated with experimental results and showed better accuracy
compared to previous plasma models.
Using a simple phenomenological model that was developed here, a numerical study was
conducted to investigate and compare the effect of steady and unsteady actuation for controlling the flow at relatively high Reynolds number. Firstly it was shown that the size of
the time-averaged separation bubble is greatly reduced and the flow structure is sensitive to
the frequency of burst modulation of DBD plasma actuators. The results also confirmed that
in the case of unsteady actuation, the burst frequency and burst ratio are crucial parameters
for influencing the capability of the actuators to control the flow. It was found that burst
frequencies near the natural frequencies of the system were able to excite the flow structure
in a resonance mode. This observation also confirmed that with proper frequencies of
excitation, the flow structure can be well rearranged and the flow losses can be reduced.
In the end, Plasma actuators were used for controlling the flow over the Coanda surface of
the ACHEON nozzle. When the plasma actuator was used, it was possible to postpone
separation of the flow and increase the deflection angle of the exit jet of the nozzle. To find
the optimum position of the actuators, seven DBD actuators in forward forcing mode were
placed over the Coanda surface considering the numerically obtained separation points.
Results show that when the actuator is placed slightly before the separation point, enhanced
thrust vectorizing with the use of DBD actuator is achievable. Preliminary results of the
experiments agree with planned/foreseen deflection angle obtained from numerical
computation.
O objetivo deste trabalho visa a investigação e desenvolvimento de diferentes métodos numéricos para modelação de actuadores a plasma de Descarga em Barreira Dieléctrica, (DBD), tendo em vista o controlo do escoamento na camada limite. Esta modelação numérica foi abordada de duas formas diferentes, uma baseada num modelo de “plasma-fluid” e outra fundamentada num modelo fenomenológico. Neste trabalho é usado um modelo “plasma-fluid” de três componentes que é baseado numa equação de transporte para as partículas electricamente carregadas. Este foi implementado no software OpenFOAM fazendo uso de diversas técnicas para minimização de problemas numéricos que ocorriam na resolução das equações. O cálculo de um problema com acoplamento entre plasma e fluido envolve uma gama diversa de escalas, tanto temporais como dimensionais, trata-se então de uma simulação numérica delicada. Como tal, e por forma a obter resultados estáveis e precisos num tempo de cálculo considerado razoável, foram implementados diversos procedimentos numéricos, tais como o tratamento semiimplícito do acoplamento da equação de Poisson com a equação da densidade de carga, o super-passo-tempo e ainda um algoritmo do tipo divisão de operador. Foi considerado o caso de uma diferença de potencial positiva, constante, e testada a dependência da densidade de corrente com os diferentes esquemas numéricos. Apesar de não existir atualmente uma base de dados, de tipo numérica ou experimental, com casos de teste para actuadores a plasma tipo DBD, o modelo computacional desenvolvido para calcular o plasma foi validado qualitativamente, bem como quantitativamente, usando os vários trabalhos numéricos disponíveis na literatura. Após esta validação inicial, a metodologia numérica desenvolvida foi utilizada para explorar a possibilidade de influenciar um escoamento de maior velocidade, através de actuadores a plasma tipo DBD com impulsos de tensão da ordem de nano-segundos (NS). Desta forma foi simulada a interacção entre um escoamento transónico e o efeito dos actuadores a plasma tipo DBD sobre o escoamento, usando pulsos de nano-segundos. O efeito térmico do gás, assim como a força resultante, foram calculados usando o modelo numérico para cálculo de plasmas desenvolvido neste trabalho. O resultado obtido é acoplado ao modelo de cálculo para a dinâmica de gases, o que torna possível simular as condições do escoamento resultante. Adicionalmente, os resultados do modelo de “plasma-fluid” foram reaproveitados para desenvolver um modelo de deposição de energia. Este demonstrou ter a capacidade de capturar correctamente as características principais do efeito de actuadores de plasma, de tipo NS-DBD, com um tempo de computação menor. Foi demonstrada que uma rápida transferência de energia, do plasma para o fluido, leva à formação de micro-ondas de choque que alteram localmente as características do escoamento transónico. Apesar da eficiência numérica do modelo de “plasma-fluid” ter sido melhorada, o seu custo computacional para a simulação de actuadores a plasma tipo DBD à escala real continua bastante elevado. Neste sentido, a partir de uma escala de propulsão gerada pelo actuador plasma DBD, foi desenvolvido um modelo mais simples para a descarga do plasma e para determinar os seus efeitos sobre o escoamento. O modelo inicial previa correctamente uma dependência não-linear entre a força propulsiva gerada e a diferença de potencial aplicada. Estas escalas foram então introduzidas num modelo fenomenológico mais simples para estimar, e simular, a distribuição de forças geradas pelo actuador a plasma. Apesar de o modelo incluir algumas correlações experimentais, este não requer qualquer parâmetro de afinação. O modelo foi validado com resultados experimentais, demonstrando melhores resultados quando comparado com outros modelos de plasma . Utilizando um modelo fenomenológico simplificado, que foi desenvolvido no presente trabalho, foi feito um estudo numérico com o objetivo de investigar, e comparar, os efeitos que uma actuação estacionária e não-estacionária exibe sobre o controlo do escoamento a números de Reynolds relativamente elevados. Foi demostrado que a dimensão da bolha de separação é reduzida em muito e que a estrutura do escoamento é sensível à frequência da modulação “burst” do actuador a plasma tipo DBD. Os resultados também confirmaram que, para o caso de actuação não-estacionária, a frequência de “burst” e o “burst ratio”, são parâmetros cruciais para influenciar a capacidade de controlo do escoamento por parte dos actuadores a plasma. Determinou-se que as frequências “burst”, semelhantes às frequências naturais do sistema, são capazes de excitar as estruturas do escoamento num modo de ressonância. Esta observação confirma igualmente que, com frequências de excitação apropriadas, a estrutura de um escoamento de camada limite consegue ser correctamente modificada, e que as perdas no escoamento são reduzidas. Por fim, os actuadores a plasma foram utilizados para o controlo do escoamento sobre uma superfície Coanda de uma tubeira. Quando nesta foi aplicado um plasma, tornou-se possível retardar a separação do escoamento e aumentar o ângulo de deflexão do jacto gerado pelo propulsor. Por forma a encontrar a posição óptima para os actuadores, sete actuadores de tipo DBD foram distribuídos ao longo da superfície Coanda, tendo em consideração os pontos de separação do escoamento na camada limite obtidos numericamente. Os resultados mostram que quando o actuador DBD é colocado ligeiramente antes do ponto de separação do escoamento, há um aumento da capacidade de controlo e vectorização do jacto gerado. Os resultados preliminares das experiências efectuadas estão de acordo com o ângulo de deflexão do jacto previsto pelo modelo computacional.
O objetivo deste trabalho visa a investigação e desenvolvimento de diferentes métodos numéricos para modelação de actuadores a plasma de Descarga em Barreira Dieléctrica, (DBD), tendo em vista o controlo do escoamento na camada limite. Esta modelação numérica foi abordada de duas formas diferentes, uma baseada num modelo de “plasma-fluid” e outra fundamentada num modelo fenomenológico. Neste trabalho é usado um modelo “plasma-fluid” de três componentes que é baseado numa equação de transporte para as partículas electricamente carregadas. Este foi implementado no software OpenFOAM fazendo uso de diversas técnicas para minimização de problemas numéricos que ocorriam na resolução das equações. O cálculo de um problema com acoplamento entre plasma e fluido envolve uma gama diversa de escalas, tanto temporais como dimensionais, trata-se então de uma simulação numérica delicada. Como tal, e por forma a obter resultados estáveis e precisos num tempo de cálculo considerado razoável, foram implementados diversos procedimentos numéricos, tais como o tratamento semiimplícito do acoplamento da equação de Poisson com a equação da densidade de carga, o super-passo-tempo e ainda um algoritmo do tipo divisão de operador. Foi considerado o caso de uma diferença de potencial positiva, constante, e testada a dependência da densidade de corrente com os diferentes esquemas numéricos. Apesar de não existir atualmente uma base de dados, de tipo numérica ou experimental, com casos de teste para actuadores a plasma tipo DBD, o modelo computacional desenvolvido para calcular o plasma foi validado qualitativamente, bem como quantitativamente, usando os vários trabalhos numéricos disponíveis na literatura. Após esta validação inicial, a metodologia numérica desenvolvida foi utilizada para explorar a possibilidade de influenciar um escoamento de maior velocidade, através de actuadores a plasma tipo DBD com impulsos de tensão da ordem de nano-segundos (NS). Desta forma foi simulada a interacção entre um escoamento transónico e o efeito dos actuadores a plasma tipo DBD sobre o escoamento, usando pulsos de nano-segundos. O efeito térmico do gás, assim como a força resultante, foram calculados usando o modelo numérico para cálculo de plasmas desenvolvido neste trabalho. O resultado obtido é acoplado ao modelo de cálculo para a dinâmica de gases, o que torna possível simular as condições do escoamento resultante. Adicionalmente, os resultados do modelo de “plasma-fluid” foram reaproveitados para desenvolver um modelo de deposição de energia. Este demonstrou ter a capacidade de capturar correctamente as características principais do efeito de actuadores de plasma, de tipo NS-DBD, com um tempo de computação menor. Foi demonstrada que uma rápida transferência de energia, do plasma para o fluido, leva à formação de micro-ondas de choque que alteram localmente as características do escoamento transónico. Apesar da eficiência numérica do modelo de “plasma-fluid” ter sido melhorada, o seu custo computacional para a simulação de actuadores a plasma tipo DBD à escala real continua bastante elevado. Neste sentido, a partir de uma escala de propulsão gerada pelo actuador plasma DBD, foi desenvolvido um modelo mais simples para a descarga do plasma e para determinar os seus efeitos sobre o escoamento. O modelo inicial previa correctamente uma dependência não-linear entre a força propulsiva gerada e a diferença de potencial aplicada. Estas escalas foram então introduzidas num modelo fenomenológico mais simples para estimar, e simular, a distribuição de forças geradas pelo actuador a plasma. Apesar de o modelo incluir algumas correlações experimentais, este não requer qualquer parâmetro de afinação. O modelo foi validado com resultados experimentais, demonstrando melhores resultados quando comparado com outros modelos de plasma . Utilizando um modelo fenomenológico simplificado, que foi desenvolvido no presente trabalho, foi feito um estudo numérico com o objetivo de investigar, e comparar, os efeitos que uma actuação estacionária e não-estacionária exibe sobre o controlo do escoamento a números de Reynolds relativamente elevados. Foi demostrado que a dimensão da bolha de separação é reduzida em muito e que a estrutura do escoamento é sensível à frequência da modulação “burst” do actuador a plasma tipo DBD. Os resultados também confirmaram que, para o caso de actuação não-estacionária, a frequência de “burst” e o “burst ratio”, são parâmetros cruciais para influenciar a capacidade de controlo do escoamento por parte dos actuadores a plasma. Determinou-se que as frequências “burst”, semelhantes às frequências naturais do sistema, são capazes de excitar as estruturas do escoamento num modo de ressonância. Esta observação confirma igualmente que, com frequências de excitação apropriadas, a estrutura de um escoamento de camada limite consegue ser correctamente modificada, e que as perdas no escoamento são reduzidas. Por fim, os actuadores a plasma foram utilizados para o controlo do escoamento sobre uma superfície Coanda de uma tubeira. Quando nesta foi aplicado um plasma, tornou-se possível retardar a separação do escoamento e aumentar o ângulo de deflexão do jacto gerado pelo propulsor. Por forma a encontrar a posição óptima para os actuadores, sete actuadores de tipo DBD foram distribuídos ao longo da superfície Coanda, tendo em consideração os pontos de separação do escoamento na camada limite obtidos numericamente. Os resultados mostram que quando o actuador DBD é colocado ligeiramente antes do ponto de separação do escoamento, há um aumento da capacidade de controlo e vectorização do jacto gerado. Os resultados preliminares das experiências efectuadas estão de acordo com o ângulo de deflexão do jacto previsto pelo modelo computacional.
Description
Keywords
Actuadores a plasma de descarga em barreira dieléctrica Modelo de “plasma-fluid” Modelo fenomenológico Controlo do escoamento na camada limite