Repository logo
 
Publication

Disease Severity Index in Parkinson’s Disease Based on Self-Organizing Maps

dc.contributor.authorAraújo, Suellen Munique
dc.contributor.authorNery, Sabrina Beatriz Mendes
dc.contributor.authorMagalhães, Bianca G.
dc.contributor.authorAlmeida, Kelson James
dc.contributor.authorGaspar, Pedro Dinis
dc.date.accessioned2024-01-23T11:41:12Z
dc.date.available2024-01-23T11:41:12Z
dc.date.issued2023
dc.description.abstractParkinson’s disease is a progressive neurodegenerative condition whose prevalence has significantly increased. This work proposes the development of a severity index to classify patients from symptoms, mainly motor ones, using an Artificial Neuronal Network (ANN) trained by the Self-Organizing Maps (SOMs) algorithm. The FOX Insight database was used, which offers data in the form of questionnaires answered by patients or caregivers from all over the world, with information regarding this pathology. After pre-processing the data, a set of 597 questionnaires containing 28 defined questions was selected. The symptoms were individually analyzed after mapping and divided into four classes. In class 1, most symptoms were not present. In class 2, the presence of certain symptoms demonstrated early milestones of the disease. In class 3, symptoms related to the patient’s mobility, in particular pain, stand out among the most reported. In class 4, the intense presence of all symptoms is observed. To test the tool, data were used from some of these patients, who answered the same questionnaire at different times (simulating medical appointments). The presented severity index to classify patients allowed identifying the current stage of the disease allowing the follow-up. This AI-based decision-support tool can help medical professionals to predict the evolution of Parkinson’s disease, which can result in longer life quality of patients, in terms of symptoms and medication requirements.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAraújo, S.M.; Nery, S.B.M.; Magalhães, B.G.; Almeida, K.J.; Gaspar, P.D. Disease Severity Index in Parkinson’s Disease Based on Self-Organizing Maps. Appl. Sci. 2023, 13, 10019. https://doi.org/ 10.3390/app131810019pt_PT
dc.identifier.doi10.3390/app131810019pt_PT
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10400.6/14113
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherApplied Sciencespt_PT
dc.relationCentre for Mechanical and Aerospace Science and Technologies
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectNeural networkspt_PT
dc.subjectKohonen mapspt_PT
dc.subjectParkinson’s diseasept_PT
dc.titleDisease Severity Index in Parkinson’s Disease Based on Self-Organizing Mapspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre for Mechanical and Aerospace Science and Technologies
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00151%2F2020/PT
oaire.citation.titleApplied Sciencespt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameAraújo
person.familyNameBeatriz Mendes Nery
person.familyNameMagalhães
person.familyNameAlmeida
person.familyNameGaspar
person.givenNameSuellen Munique
person.givenNameSabrina
person.givenNameBianca
person.givenNameKelson James
person.givenNamePedro Dinis
person.identifier.ciencia-id6111-9F05-2916
person.identifier.orcid0000-0002-6149-0045
person.identifier.orcid0000-0002-8254-0152
person.identifier.orcid0000-0003-3940-5577
person.identifier.orcid0000-0002-6299-7323
person.identifier.orcid0000-0003-1691-1709
person.identifier.ridN-3016-2013
person.identifier.scopus-author-id57419570900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationc418a5db-f579-45a3-8bbb-0ae0360acad2
relation.isAuthorOfPublication6a51910a-fee4-499b-9787-f7bc2b908e7c
relation.isAuthorOfPublicationb1577651-f116-495d-818e-40cc45609b55
relation.isAuthorOfPublicationf1dbcbf1-3bb8-40c9-ad2f-17acdb2904aa
relation.isAuthorOfPublicationb69e2ba0-43af-4cf7-873e-090fd9fc6c94
relation.isAuthorOfPublication.latestForDiscoveryb69e2ba0-43af-4cf7-873e-090fd9fc6c94
relation.isProjectOfPublicationc1aeadcb-d7fa-4d70-959a-2447dc0b2276
relation.isProjectOfPublication.latestForDiscoveryc1aeadcb-d7fa-4d70-959a-2447dc0b2276

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
applsci-13-10019-v2.pdf
Size:
7.76 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: