Repository logo
 
Publication

Predicting airfoil dynamic stall loads using neural networks

datacite.subject.fosEngenharia e Tecnologia::Engenharia Mecânica
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
datacite.subject.sdg12:Produção e Consumo Sustentáveis
datacite.subject.sdg13:Ação Climática
dc.contributor.authorCamacho, Emanuel António Rodrigues
dc.contributor.authorSilva, André Resende Rodrigues da
dc.contributor.authorMarques, Flávio D.
dc.date.accessioned2025-12-23T09:22:49Z
dc.date.available2025-12-23T09:22:49Z
dc.date.issued2025-06-25
dc.description.abstractDynamic stall is an aerodynamic regime characterized by loss of airfoil lift, drag increment, and abrupt changes in the pitching moment. Such effects can couple with structural dynamics where perturbations can be easily amplified, making this a critical phenomenon that jeopardizes operational safety. Hence, there is always the need to constantly study the basics of dynamic stall and provide newer predictive models that can take advantage of the current interest peak in artificial intelligence. The present work builds upon that need, exploring the ability of a simple feed-forward network to predict the oscillation cycle of a pitching airfoil experiencing from light to deep stall of a NACA0012 airfoil close to a Reynolds number of approximately 1.1x10^6. The proposed neural network uses the angle of attack and its rate of change as inputs, then estimates the whole aerodynamic cycle at once, outputting an aggregated vector of drag, lift, and pitching moment coefficients. The training phase was conducted using a database containing several conditions obtained from experimental tests, with a strict convergence criterion of R^2=0.99 for both training and test datasets. Results show that the neural network, even in the least-performing conditions, can capture the aerodynamics and overall tendencies, even if some dynamics are underrepresented in the training dataset. The present work brings down the complexity of methodology while demonstrating that a simplistic architecture can still offer an accurate dynamic stall model.eng
dc.description.sponsorshipBrazilian National Council for Scientific and Technological Development – CNPq (grant #306698/2023-4)
dc.identifier.citationCamacho, E.A.R. , Silva, A.R.R. , Marques, F.D., "Predicting airfoil dynamic stall loads using neural networks", Aerospace Science and TechnologyOpen source preview, 2025, 165, 110466, https://doi.org/10.1016/j.ast.2025.110466
dc.identifier.doi10.1016/j.ast.2025.110466
dc.identifier.issn1270-9638
dc.identifier.issn1626-3219
dc.identifier.urihttp://hdl.handle.net/10400.6/19611
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics UIDP/50022/2020
dc.relationAssociate Laboratory of Energy, Transports and Aerospace
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S1270963825005371?via%3Dihub#bl0010
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDynamic stall
dc.subjectArtificial intelligence
dc.subjectPitching airfoil
dc.subjectExperimental data integration
dc.titlePredicting airfoil dynamic stall loads using neural networkseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics UIDP/50022/2020
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aerospace
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50022%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0079%2F2020/PT
oaire.citation.endPage10
oaire.citation.issueOctober 2025
oaire.citation.startPage1
oaire.citation.titleAerospace Science and Technology
oaire.citation.volume165
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCamacho
person.familyNameSilva
person.familyNameMarques
person.givenNameEmanuel António Rodrigues
person.givenNameAndré Resende Rodrigues da
person.givenNameFlávio D.
person.identifierJ-4185-2012
person.identifier1584962
person.identifier.ciencia-id4416-08D8-F83D
person.identifier.ciencia-id8219-4B2B-E1C7
person.identifier.ciencia-id8316-99B9-CBB4
person.identifier.orcid0000-0002-1648-8368
person.identifier.orcid0000-0002-4901-7140
person.identifier.orcid0000-0003-1451-3424
person.identifier.ridF-4698-2012
person.identifier.scopus-author-id11440407500
person.identifier.scopus-author-id7102759984
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication38bf759d-639d-44a2-b7da-02e5b6c9774a
relation.isAuthorOfPublication908e150d-3890-457c-b5da-09c84671cb93
relation.isAuthorOfPublicationb7a67d58-8726-4057-a71c-03466ccb9aca
relation.isAuthorOfPublication.latestForDiscoveryb7a67d58-8726-4057-a71c-03466ccb9aca
relation.isProjectOfPublicationd3f48e72-49da-44e7-b054-cbdb0644e04d
relation.isProjectOfPublication537bf50b-b9fe-4a1d-ace4-7e64c86ebe14
relation.isProjectOfPublication73e4b1b0-c57b-4b05-b5a8-a41433c42ef8
relation.isProjectOfPublication.latestForDiscoveryd3f48e72-49da-44e7-b054-cbdb0644e04d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2.2.5.56.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: