Repository logo
 
Publication

Fast Flapping Aerodynamics Prediction Using a Recurrent Neural Network

dc.contributor.authorPereira, João A. F.
dc.contributor.authorCamacho, Emanuel A. R.
dc.contributor.authorMarques, Flávio D.
dc.contributor.authorSilva, A. R. R.
dc.date.accessioned2024-01-09T09:58:12Z
dc.date.available2024-01-09T09:58:12Z
dc.date.issued2023-11-15
dc.description.abstractOne of the major tasks of aerodynamics is the study of the flow around airfoils. While most conventional methods deal well with steady flows, unsteady airfoils, like the ones on helicopter blades, are subject to such complex dynamic flows that their study can impose substantial difficulties. However, recent applications of machine learning, in the form of neural networks, have shown very promising results when dealing with complex dynamic aerodynamic phenomena. For this reason, this paper proposes the implementation of a recurrent neural network for the time-wise prediction of the lift, momentum, and drag coefficients for an airfoil subject to plunging motion, using the 𝑅𝑒, k, h, 𝑘ℎ, and the time history of the effective angle of attack as inputs. Results from early training already suggest the network’s capability to approximate the desired outputs, even if with some limitations. However, the network configuration is flexible enough to be fed with either experimental or numerical data in the future.pt_PT
dc.description.sponsorshipThis research was funded by Portuguese’s Fundação para a Ciência e Tecnologia (FCT) under grant numbers UIDB/50022/2020, UIDP/50022/2020, LA/P/0079/2020, 2020.04648.BD, and by Brazil’s National Council for Scientific and Technological Development (CNPq grant #306824/2019-1).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPereira, J.A.F.; Camacho, E.A.R.; Marques, F.D.; Silva, A.R.R. Fast Flapping Aerodynamics Prediction Using a Recurrent Neural Network. Eng. Proc. 2023, 56, 219. https://doi.org/10.3390/ASEC2023-16272pt_PT
dc.identifier.doi10.3390/ASEC2023-16272pt_PT
dc.identifier.issn2673-4591
dc.identifier.urihttp://hdl.handle.net/10400.6/13890
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPI AGpt_PT
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.relationAssociate Laboratory of Energy, Transports and Aerospace.
dc.relationBoundary Layer Control in Plunging and Pitching Airfoils
dc.relation.publisherversionhttps://www.mdpi.com/2673-4591/56/1/219pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectUnsteady aerodynamicspt_PT
dc.subjectRecurrent neural networkpt_PT
dc.subjectPotential flowpt_PT
dc.titleFast Flapping Aerodynamics Prediction Using a Recurrent Neural Networkpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aerospace.
oaire.awardTitleBoundary Layer Control in Plunging and Pitching Airfoils
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50022%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0079%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POR_CENTRO/2020.04648.BD/PT
oaire.citation.conferencePlaceOnline, 27 October–10 November 2023pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage219pt_PT
oaire.citation.titleEngineering Proceedings, 4th International Electronic Conference on Applied Sciencespt_PT
oaire.citation.volume56pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamPOR_CENTRO
person.familyNameRodrigues Camacho
person.familyNameMarques
person.familyNameResende Rodrigues da Silva
person.givenNameEmanuel António
person.givenNameFlávio D.
person.givenNameAndré
person.identifier1584962
person.identifierJ-4185-2012
person.identifier.ciencia-id4416-08D8-F83D
person.identifier.ciencia-id8316-99B9-CBB4
person.identifier.ciencia-id8219-4B2B-E1C7
person.identifier.orcid0000-0002-1648-8368
person.identifier.orcid0000-0003-1451-3424
person.identifier.orcid0000-0002-4901-7140
person.identifier.ridF-4698-2012
person.identifier.scopus-author-id7102759984
person.identifier.scopus-author-id11440407500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication38bf759d-639d-44a2-b7da-02e5b6c9774a
relation.isAuthorOfPublicationb7a67d58-8726-4057-a71c-03466ccb9aca
relation.isAuthorOfPublication908e150d-3890-457c-b5da-09c84671cb93
relation.isAuthorOfPublication.latestForDiscovery908e150d-3890-457c-b5da-09c84671cb93
relation.isProjectOfPublicationd3f48e72-49da-44e7-b054-cbdb0644e04d
relation.isProjectOfPublication537bf50b-b9fe-4a1d-ace4-7e64c86ebe14
relation.isProjectOfPublication73e4b1b0-c57b-4b05-b5a8-a41433c42ef8
relation.isProjectOfPublication0719fa88-eba7-4948-aea2-c395054c825e
relation.isProjectOfPublication.latestForDiscovery73e4b1b0-c57b-4b05-b5a8-a41433c42ef8

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DOI-10.3390-ASEC2023-16272.pdf
Size:
290.19 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: