Repository logo
 
Publication

Conformally-flat, non-singular static metric in infinite derivative gravity

dc.contributor.authorBuoninfante, Luca
dc.contributor.authorKoshelev, Alexey
dc.contributor.authorLambiase, Gaetano
dc.contributor.authorMarto, João
dc.contributor.authorMazumdar, Anupam
dc.date.accessioned2018-11-23T15:20:40Z
dc.date.available2018-11-23T15:20:40Z
dc.date.issued2018
dc.description.abstractIn Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within in nite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the e efective scale of non-locality.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1088/1475-7516/2018/06/014pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/6475
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relation.publisherversionhttps://doi.org/10.1088/1475-7516/2018/06/014pt_PT
dc.subjectGeneral relativitypt_PT
dc.subjectInfinite derivative gravitypt_PT
dc.titleConformally-flat, non-singular static metric in infinite derivative gravitypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00212%2F2013/PT
oaire.citation.endPage014pt_PT
oaire.citation.issue06pt_PT
oaire.citation.startPage014pt_PT
oaire.citation.volume2018pt_PT
oaire.fundingStream5876
person.familyNameBuoninfante
person.familyNameKoshelev
person.familyNameLambiase
person.familyNamePedro de Jesus Marto
person.familyNameMazumdar
person.givenNameLuca
person.givenNameAlexey
person.givenNameGaetano
person.givenNameJoão
person.givenNameAnupam
person.identifier.ciencia-id5C1A-9220-7317
person.identifier.ciencia-id2F16-67B1-A930
person.identifier.orcid0000-0002-1875-8333
person.identifier.orcid0000-0002-6060-7942
person.identifier.orcid0000-0001-7574-2330
person.identifier.orcid0000-0003-3974-9177
person.identifier.orcid0000-0002-0967-8964
person.identifier.ridG-9287-2014
person.identifier.scopus-author-id57194172928
person.identifier.scopus-author-id7006380499
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication87fbd878-f57f-4267-88a9-5809f3587a57
relation.isAuthorOfPublicatione4f18905-eccc-4452-b94e-a0cb5f84ab00
relation.isAuthorOfPublicationf67bf868-f277-421f-b9d1-eb2e0498a15a
relation.isAuthorOfPublicationac6f6378-b674-41dc-a396-6163a7fe445f
relation.isAuthorOfPublication46f7f943-c7c4-4fe9-821c-b67ee320dd71
relation.isAuthorOfPublication.latestForDiscovery87fbd878-f57f-4267-88a9-5809f3587a57
relation.isProjectOfPublicationea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9
relation.isProjectOfPublication.latestForDiscoveryea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
document.pdf
Size:
585.34 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: