Name: | Description: | Size: | Format: | |
---|---|---|---|---|
7.64 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A mudança para uma mobilidade de baixas emissões, incorporada numa necessidade
crescente de desenvolvimento sustentável, tornam os modos suaves numa alternativa
de transporte altamente promovida nas políticas de mobilidade nacional e
internacional. Os fatores que podem influenciar a adoção de modos suaves nas viagens
diárias urbanas podem ser agrupados em quatro subcategorias: fatores demográficos,
económicos, de distância e tempo, e físicos e climáticos. O objetivo principal deste
trabalho é automatizar os vários processos necessários para calcular um Índice de
Potencial de Mobilidade Suave, representativo da mobilidade pedonal e ciclável em
deslocações pendulares, utilizando a funcionalidade ModelBuilder disponível no
software ArcGIS. As ferramentas resultantes pretendem apoiar os gestores do espaço
urbano na definição de estratégias de mobilidade sustentável e na alocação de recursos.
As variáveis consideradas na análise do potencial de mobilidade são a localização dos
polos geradores de viagens, a densidade populacional e as características da rede viária
(classificação hierárquica e inclinação das vias e a existência de passeios). Para atingir
os objetivos foram elaboradas duas ferramentas em ambiente SIG. Uma que permite
calcular o tempo de percurso em bicicleta convencional, elétrica e a pé de cada troço da
rede analisada (em minutos), cujo resultado suporta a criação da Network Dataset, e
outra que calcula, através de uma análise multicritério espacial, os índices de
walkability, bikeability (convencional e elétrica) e o potencial de mobilidade suave de
cada troço da rede. As ferramentas foram testadas e validadas pela aplicação das
mesmas a um caso de estudo, a rede viária do perímetro urbano da cidade da Covilhã.
Os resultados mostram que 16,3% das vias no perímetro urbano do município da
Covilhã são classificadas com um potencial razoável a muito elevado para a mobilidade
pedonal. Para a mobilidade em bicicleta convencional, as vias com potencial razoável a
muito elevado sobe para 29,4%, já para a deslocação em bicicleta elétrica esse valor é de
38,7%. Combinando o potencial pedonal com o potencial em bicicleta convencional e,
uma distribuição de pesos de 50% para cada modo, 18,6% da rede apresenta aptidão
razoável a muito elevada para a mobilidade suave. Considerando a combinação do
potencial pedonal e o potencial em bicicleta elétrica, esse valor sobe para 23,4%.
The shift to low-emission mobility, embedded in a growing need for sustainable development, makes soft modes a highly promoted transport alternative in national and international mobility policies. Factors that can influence the adoption of soft modes for urban commuting can be grouped into four subcategories: demographic, economic, distance and time, and physical and climatic factors. The main objective of this work is to automate the various processes necessary to calculate a Soft Mobility Potential Index, representative of pedestrian and cycling mobility in commuting, using the ModelBuilder functionality available in ArcGIS software. The resulting tools are intended to support urban space managers in defining sustainable mobility strategies and allocating resources. The variables considered in the analysis of the mobility potential are the location of the trip generating poles, the population density and the characteristics of the road network (hierarchical classification and gradient of the roads and the existence of sidewalks). To achieve the goals, two tools were developed in a GIS environment. One that allows to calculate the travel time by walk and by conventional and electric bicycle for each section of the analyzed network (in minutes), whose result supports the creation of the Network Dataset, and another that calculates, through a multi-criteria spatial analysis, the walkability, bikeability (conventional and electric) and the soft mobility potential indeces of each section of the network. The tools were tested and validated by applying them to a case study, the road network of the urban perimeter of the city of Covilhã. The results show that 16,3% of the roads in the urban perimeter of the municipality of Covilhã are classified as having a reasonable to very high potential for pedestrian mobility. For mobility on a conventional bicycle, routes with reasonable to very high potential rise to 29,4%, whereas for travel on an electric bicycle this value is 38,7%. Combining pedestrian potential with conventional bicycle potential and a weight distribution of 50% for each mode, 18.6% of the net has a reasonable to very high aptitude for soft mobility. Considering the combination of pedestrian and electric bicycle potential, this figure rises to 23.4%.
The shift to low-emission mobility, embedded in a growing need for sustainable development, makes soft modes a highly promoted transport alternative in national and international mobility policies. Factors that can influence the adoption of soft modes for urban commuting can be grouped into four subcategories: demographic, economic, distance and time, and physical and climatic factors. The main objective of this work is to automate the various processes necessary to calculate a Soft Mobility Potential Index, representative of pedestrian and cycling mobility in commuting, using the ModelBuilder functionality available in ArcGIS software. The resulting tools are intended to support urban space managers in defining sustainable mobility strategies and allocating resources. The variables considered in the analysis of the mobility potential are the location of the trip generating poles, the population density and the characteristics of the road network (hierarchical classification and gradient of the roads and the existence of sidewalks). To achieve the goals, two tools were developed in a GIS environment. One that allows to calculate the travel time by walk and by conventional and electric bicycle for each section of the analyzed network (in minutes), whose result supports the creation of the Network Dataset, and another that calculates, through a multi-criteria spatial analysis, the walkability, bikeability (conventional and electric) and the soft mobility potential indeces of each section of the network. The tools were tested and validated by applying them to a case study, the road network of the urban perimeter of the city of Covilhã. The results show that 16,3% of the roads in the urban perimeter of the municipality of Covilhã are classified as having a reasonable to very high potential for pedestrian mobility. For mobility on a conventional bicycle, routes with reasonable to very high potential rise to 29,4%, whereas for travel on an electric bicycle this value is 38,7%. Combining pedestrian potential with conventional bicycle potential and a weight distribution of 50% for each mode, 18.6% of the net has a reasonable to very high aptitude for soft mobility. Considering the combination of pedestrian and electric bicycle potential, this figure rises to 23.4%.
Description
Keywords
Análise
Multicritério Espacial Bikeability Mobilidade Suave Modelbuilder (Arcgis) Sistemas de Informação Geográfica (Sig) Walkability