Repository logo
 
Publication

Non-singular rotating metric in ghost-free infinite derivative gravity

dc.contributor.authorBuoninfante, Luca
dc.contributor.authorCornell, Alan
dc.contributor.authorHarmsen, Gerhard
dc.contributor.authorKoshelev, Alexey
dc.contributor.authorLambiase, Gaetano
dc.contributor.authorMarto, João
dc.contributor.authorMazumdar, Anupam
dc.date.accessioned2018-11-23T15:22:25Z
dc.date.available2018-11-23T15:22:25Z
dc.date.issued2018-07-24
dc.description.abstractIt is well-known that the vacuum solution of Einstein's theory of general relativity provides a rotating metric with a ring singularity, which is covered by the inner and outer horizons, and an ergo region. In this paper, we will discuss how ghost free, quadratic curvature, Infinite Derivative Gravity (IDG) may resolve the ring-type singularity in nature. It is well-known that a class of IDG actions admit linearized metric solutions which can avoid point-like singularity by a smearing process of the Delta-source distribution induced by non-locality, which makes the metric potential finite everywhere including at $r=0$, and even at the non-linear level may resolve the Schwarzschild singularity. The same action can also resolve the ring singularity in such a way that no horizons are formed in the linear regime, where in this case non-locality plays a crucial role in smearing out a delta-source distribution on a ring. We will also study the full non-linear regime. First, we will argue that the presence of non-local gravitational interaction will not allow the Kerr metric as an exact solution, as there are infinite order derivatives acting on the theta-Heaviside and the delta-Dirac distributions on a ring. Second, we will explicitly show that the Kerr-metric is not a pure vacuum solution when the Weyl squared term, with a non-constant form-factor, is taken into account in the action.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1103/PhysRevD.98.084041pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/6476
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAmerican Physical Societypt_PT
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevD.98.084041pt_PT
dc.subjectGeneral relativitypt_PT
dc.subjectInfinite derivative gravitypt_PT
dc.titleNon-singular rotating metric in ghost-free infinite derivative gravitypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00212%2F2013/PT
oaire.citation.issue8pt_PT
oaire.citation.volume98pt_PT
oaire.fundingStream5876
person.familyNameBuoninfante
person.familyNameCornell
person.familyNameKoshelev
person.familyNameLambiase
person.familyNamePedro de Jesus Marto
person.givenNameLuca
person.givenNameAlan
person.givenNameAlexey
person.givenNameGaetano
person.givenNameJoão
person.identifier.ciencia-id5C1A-9220-7317
person.identifier.ciencia-id2F16-67B1-A930
person.identifier.orcid0000-0002-1875-8333
person.identifier.orcid0000-0003-1896-4628
person.identifier.orcid0000-0002-6060-7942
person.identifier.orcid0000-0001-7574-2330
person.identifier.orcid0000-0003-3974-9177
person.identifier.ridG-9287-2014
person.identifier.scopus-author-id57194172928
person.identifier.scopus-author-id7003915437
person.identifier.scopus-author-id7006380499
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication87fbd878-f57f-4267-88a9-5809f3587a57
relation.isAuthorOfPublication0b181eb8-9d69-4330-9eea-a884e6b2194d
relation.isAuthorOfPublicatione4f18905-eccc-4452-b94e-a0cb5f84ab00
relation.isAuthorOfPublicationf67bf868-f277-421f-b9d1-eb2e0498a15a
relation.isAuthorOfPublicationac6f6378-b674-41dc-a396-6163a7fe445f
relation.isAuthorOfPublication.latestForDiscovery87fbd878-f57f-4267-88a9-5809f3587a57
relation.isProjectOfPublicationea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9
relation.isProjectOfPublication.latestForDiscoveryea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
document.pdf
Size:
608.18 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: