Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.16 MB | Adobe PDF |
Abstract(s)
O paradigma de geração de energia elétrica tem vindo a evoluir para fontes
sustentáveis e renováveis, mas esta mudança traz alguns desafios em termos de gestão e
fiabilidade. Um dos problemas que atrasam o desenvolvimento destas tecnologias é a
flutuação da disponibilidade dos recursos naturais utilizados (capítulo 1).
Esta dissertação visa mostrar uma solução de armazenamento de energia
alternativa, e/ou complementar a baterias eletroquímicas (capítulo 2), através de um
volante de inércia (Flywheel Energy Storage System – FESS), focando-se na
parametrização e no controlo do sistema. Os sistemas industriais já disponíveis no
mercado têm elevada potência, e nos mais modernos o volante é levitado magneticamente,
o que lhe confere um rendimento superior. Devido a constrangimentos na disponibilidade
deste equipamento, não foi possível testar um volante de inércia de escala industrial, mas
os resultados apresentados nesta dissertação podem ser extrapolados para sistemas
maiores. Os FESS conferem uma estabilização a curto prazo da disponibilidade de
eletricidade ao sistema de geração de energia, e dependendo da capacidade podem até
fornecer energia enquanto há quebras mais longas na geração (como por exemplo, quando
associado painéis fotovoltaicos, durante algum tempo depois do pôr do sol).
A parte mais importante de um FESS, e ao mesmo tempo o elo mais fraco em relação
aos parâmetros importantes como potência, rendimento e custo, é o acionamento do
sistema (capítulo 3). Neste trabalho são apresentadas as máquinas elétricas possíveis de
aplicar num sistema destes, das quais se escolheram duas para aprofundar e testar – a
máquina DC (Direct Current) com escovas e a máquina PMSM (Permanent Magnet
Synchronous Machine), sem escovas, de onda trapezoidal (também chamada máquina
BLDC – Brushless Direct Current).
Cada uma destas soluções de acionamento elétrico tem associado um tipo de
conversor eletrónico adequado, que é a base para o controlo da máquina. Para as duas
escolhas também foi estudado o seu conversor e o controlo necessários.
Estas duas tecnologias foram testadas e parametrizadas de maneira a criar um
modelo matemático que foi usado para prever o comportamento do volante de inércia em
simulações no programa MATLAB-SIMULINK. Foram depois realizados ensaios
experimentais para comprovar a viabilidade do controlo proposto nesta dissertação. Para
aproximar ao máximo as simulações da realidade foi necessário encontrar parâmetros
mecânicos e elétricos das máquinas usadas (incluindo volante), conversor, tipo de
controlo, sistema de geração e consumo. Todos os testes práticos de parametrização e ensaios experimentais finais foram
realizados no Centro de Investigação em Sistemas Electromecatrónicos | Guarda
International Research Station on Renewable Energies (CISE | GIRS-RES) cujas
instalações estão localizadas no Instituto Politécnico da Guarda (capítulo 4).
Electric energy generation has recently been going through a paradigm shift into renewable and sustainable energy sources, but this transition brings some challenges regarding management and reliability. One of these challenges is the intermittent availability of some natural sources (chapter 1). This dissertation demonstrates an energy storage technology that is alternative, and/or complementary to traditional electrochemical batteries, termed the Flywheel Energy Storage System (FESS). Focus is put on its parametrization and control. Industrial systems already available have considerable power. In the most advanced ones, the flywheel is magnetically levitated to increase its efficiency. Due to restrictions in equipment availability, it was not possible to test a FESS of industrial scale. Yet, the results shown in this dissertation can be extrapolated to larger systems. The FESS provides shortterm stabilization in terms of electric power availability. Besides, and depending on its capacity, the FESS can even supply power for slightly longer periods (for example, when integrated with photovoltaic panels, after the sun sets). The most important part of a FESS, and also the weak link in terms of power, efficiency, and cost, is the electric drive (chapter 3). The main possible drive technologies are presented, from which two are chosen to test – the DC brushed machine and the Permanent Magnet Synchronous Machine (PMSM), without brushes, and trapezoidal waveform (also called Brushless DC - BLDC machine). Each of these electric machines is controlled by an appropriate electronic power converter, which is the foundation for the control of the system. For both machine technologies, the necessary converter and control methods were also studied. These two systems were tested and parameterized with the intent of creating a mathematical model capable of predicting the flywheel’s behaviour, through simulations in MATLAB-SIMULINK. Then, experimental tests were conducted to assess feasibility of the control methods proposed in this dissertation.All the parametrization tests and final experimental trials were conducted in Electromechatronic Systems Research Centre | Guarda International Research Station on Renewable Energies (CISE | GIRS-RES).
Electric energy generation has recently been going through a paradigm shift into renewable and sustainable energy sources, but this transition brings some challenges regarding management and reliability. One of these challenges is the intermittent availability of some natural sources (chapter 1). This dissertation demonstrates an energy storage technology that is alternative, and/or complementary to traditional electrochemical batteries, termed the Flywheel Energy Storage System (FESS). Focus is put on its parametrization and control. Industrial systems already available have considerable power. In the most advanced ones, the flywheel is magnetically levitated to increase its efficiency. Due to restrictions in equipment availability, it was not possible to test a FESS of industrial scale. Yet, the results shown in this dissertation can be extrapolated to larger systems. The FESS provides shortterm stabilization in terms of electric power availability. Besides, and depending on its capacity, the FESS can even supply power for slightly longer periods (for example, when integrated with photovoltaic panels, after the sun sets). The most important part of a FESS, and also the weak link in terms of power, efficiency, and cost, is the electric drive (chapter 3). The main possible drive technologies are presented, from which two are chosen to test – the DC brushed machine and the Permanent Magnet Synchronous Machine (PMSM), without brushes, and trapezoidal waveform (also called Brushless DC - BLDC machine). Each of these electric machines is controlled by an appropriate electronic power converter, which is the foundation for the control of the system. For both machine technologies, the necessary converter and control methods were also studied. These two systems were tested and parameterized with the intent of creating a mathematical model capable of predicting the flywheel’s behaviour, through simulations in MATLAB-SIMULINK. Then, experimental tests were conducted to assess feasibility of the control methods proposed in this dissertation.All the parametrization tests and final experimental trials were conducted in Electromechatronic Systems Research Centre | Guarda International Research Station on Renewable Energies (CISE | GIRS-RES).
Description
Keywords
Armazenamento de Energia Energias Renováveis Máquina Elétrica Volante de Inércia