Repository logo
 
Publication

On the Modelling of Species Distribution: Logistic Regression Versus Density Probability Function

dc.contributor.authorBioco, João
dc.contributor.authorPrata, Paula
dc.contributor.authorCanovas, Fernando
dc.contributor.authorFazendeiro, Paulo
dc.date.accessioned2022-08-26T08:21:25Z
dc.date.available2022-08-26T08:21:25Z
dc.date.issued2022
dc.description.abstractThe concerns related to climate changes have been gaining attention in the last few years due to the negative impacts on the environment, economy, and society. To better understand and anticipate the effects of climate changes in the distribution of species, several techniques have been adopted comprising models of different complexity. In general, these models apply algorithms and statistical methods capable of predicting in a particular study area, the locations considered suitable for a species to survive and reproduce, given a set of eco-geographical variables that influence species behavior. Logistic regression algorithm and Probability density function are two common methods that can be used to model the species suitability. The former is a representative of a class of models that requires the availability (or imputation) of presence-absence data whereas the latter represents the models that only require presence data. Both approaches are compared regarding the capability to accurately predict the environmental suitability for species. On a different way, the behaviour of the species in the projected environments are analysed by simulating its potential distribution in the projected environment. A case study reporting results from two types of species with economical interest is presented: the strawberry tree (Arbutus unedo) in mainland Portugal, and the Apis mellifera (African Lineage) in the Iberian Peninsula.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBioco, J., Prata, P., Canovas, F., Fazendeiro, P. (2022). On the Modelling of Species Distribution: Logistic Regression Versus Density Probability Function. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_25.pt_PT
dc.identifier.doi10.1007/978-3-031-10464-0_25pt_PT
dc.identifier.isbn978-3-031-10463-3
dc.identifier.urihttp://hdl.handle.net/10400.6/12326
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer, Champt_PT
dc.relationInstituto de Telecomunicações
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-10464-0_25pt_PT
dc.subjectAgent-based Modelling and Simulationpt_PT
dc.subjectSpecies Distribution Modelspt_PT
dc.subjectEnvironmental Modellingpt_PT
dc.subjectLogistic Regressionpt_PT
dc.subjectDensity Probability Functionpt_PT
dc.subjectPseudo-absence Datapt_PT
dc.titleOn the Modelling of Species Distribution: Logistic Regression Versus Density Probability Functionpt_PT
dc.typebook part
dspace.entity.typePublication
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT
oaire.citation.conferencePlaceSpringer, Champt_PT
oaire.citation.endPage391pt_PT
oaire.citation.startPage378pt_PT
oaire.citation.titleLecture Notes in Networks and Systemspt_PT
oaire.citation.volume507pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBioco
person.familyNamePrata
person.familyNameCanovas
person.familyNameFazendeiro
person.givenNameJoao
person.givenNamePaula
person.givenNameFernando
person.givenNamePaulo
person.identifier.ciencia-id651F-C1C8-44AD
person.identifier.ciencia-id911F-3584-721F
person.identifier.orcid0000-0001-8205-8350
person.identifier.orcid0000-0002-3072-0186
person.identifier.orcid0000-0002-8837-1927
person.identifier.orcid0000-0001-6054-7188
person.identifier.ridM-3457-2013
person.identifier.ridB-7713-2008
person.identifier.scopus-author-id6506143567
person.identifier.scopus-author-id23395891600
person.identifier.scopus-author-id19640174600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublication3648f1a3-236e-4a29-8c28-71d24e59789d
relation.isAuthorOfPublication138a0dac-5e5d-466c-901d-4ed34f860403
relation.isAuthorOfPublication8c961af4-4e59-4d18-8e77-16fbb7b593d2
relation.isAuthorOfPublication47442970-f246-4908-b873-0b58e684a9e9
relation.isAuthorOfPublication.latestForDiscovery47442970-f246-4908-b873-0b58e684a9e9
relation.isProjectOfPublication5a9bd4c8-57a9-46c4-95dc-a5e5c220c117
relation.isProjectOfPublication.latestForDiscovery5a9bd4c8-57a9-46c4-95dc-a5e5c220c117

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
final-computing-conference2022.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: