ICI - Instituto Coordenador da Investigação
URI permanente desta comunidade:
O ICI integra Unidades de Investigação que exerçam as suas atividades na UBI e que tenham sido classificados com notação igual ou superior a Bom pelos painéis internacionais de avaliação periódica designados pela Fundação para a Ciência e Tecnologia.
Website ICINavegar
Percorrer ICI - Instituto Coordenador da Investigação por Objetivos de Desenvolvimento Sustentável (ODS) "03:Saúde de Qualidade"
A mostrar 1 - 10 de 12
Resultados por página
Opções de ordenação
- ARIA-Italy managing allergic rhinitis and asthma in a changing world: The role of the PharmacistPublication . Paoletti, Giovanni; Giua, Corrado; Marti, Alessandro; Baio, Matteo Alberto; Valli, Nicolò; Ridolo, Erminia; Ventura, Maria Teresa; Passalacqua, Giovanni; Puggioni, Francesca; Lourenço, Olga ; Bousquet, Jean; Canonica, Giogio Walter; Heffler, Enrico; Lombardi, CarloAllergic rhinitis (AR) and asthma are common respiratory disorders that often occur together, affecting quality of life and increasing healthcare expenses of patients. These chronic illnesses are often managed without medical supervision, creating distinct challenges. A lack of resources can limit regular follow-up, which in turn promotes disease mismanagement and an increased reliance on self-medication, including the inappropriate use of corticosteroids and nasal decongestants. Community pharmacies could serve as critical primary healthcare providers, facilitating AR and asthma management by promoting therapy adherence, minimizing drug misuse, and improving symptom monitoring using digital tools. The evolving role of pharmacists as vital healthcare team members is highlighted by their involvement in screening, prevention, and patient education, particularly in underserved communities. Strengthening the partnerships between pharmacists, physicians, and patients may lead to more tailored and effective management strategies. This collaborative approach has demonstrated promise in enhancing disease outcomes and reducing healthcare costs.
- Beeswax-enriched tricalcium phosphate/hydroxyapatite/sodium alginate/ thymol 3D-printed scaffolds for application in bone tissue engineeringPublication . Francisco, Martinho Jorge ; Cabral, Cátia Solange Duarte; Calvinho, Paula Cristina Nunes Ferreira ; Correia, Ilídio Joaquim Sobreira ; Moreira, André FerreiraTissue engineering, particularly bone tissue engineering (BTE), continues to pose significant challenges to modern medicine. In this work, a rapid prototyping technique was explored to create 3D scaffolds using a Fab@Home 3D-Plotter extruder. For that purpose, a novel composite mixture containing tricalcium phosphate (TCP), hydroxyapatite (HAp), sodium alginate (SA), beeswax (BW), and thymol (TM) was formulated. BW and TM resulted in 3D scaffolds with rougher surfaces and moderate hydrophilic profiles, properties crucial for mediating cell adhesion and proliferation. Moreover, the 3D scaffolds containing BW displayed a significant increase in compressive strength and Young modulus, being comparable to those exhibited by trabecular bone. TM loading prevented the establishment of Staphylococcus aureus and Escherichia coli infections, inhibiting bacterial adhesion and proliferation at the scaffolds' surface. Additionally, the cytocompatibility of the scaffolds was confirmed over 21 days, with the adhesion and proliferation of Human osteoblasts (hOB) at the scaffold's surfaces. Simultaneously, calcium and phosphate ions accumulated at the scaffolds' surface, forming apatite crystals. Therefore, this improved composite mixture showed promising results for being applied in BTE, not only facilitating hOB cell adhesion and proliferation but also avoiding bacterial infection, addressing a critical challenge in implant-based therapies.
- Driving Healthcare Monitoring with IoT and Wearable Devices: A Systematic ReviewPublication . João Pedro da Silva Baiense; Zdravevski, Eftim; Coelho, Paulo Jorge Simões; Serrano Pires, Ivan Miguel; Velez, Fernando J.Wearable technologies have become a significant part of the healthcare industry, collecting personal health data and extracting valuable information for real-time assistance. This review article analyzes 35 scientific publications on driving healthcare monitoring with IoT and wearable device applications. These articles were considered in a quantitative and qualitative analysis using the Natural Language Processing framework and the PRISMA methodology to filter the search results. The selected articles were published between January 2010 and May 2024 in one of the following scientific databases: IEEE Xplore, Springer, ScienceDirect (i.e., El- sevier), Association for Computing Machinery (ACM), Multidisciplinary Digital Publishing Institute (MDPI), or PubMed Central. The analysis considers population, methods, hardware, features, and communications. The research highlights that data collected from one or numerous sensors is processed and accessible in a database server for various uses, such as informing professional careers or assisting users. The review sug- gests that robust and efficient driving healthcare monitoring with IoT and wearable devices applications can be designed considering the valuable principles presented in this review.
- Dual-crosslinked injectable in situ forming Alginate/CaCl2/Pluronic F127/ α-Cyclodextrin hydrogels incorporating Doxorubicin and graphene-based nanomaterials for cancer chemo-photothermal therapyPublication . Gonçalves, Joaquim; Melo, Bruna Daniela Lopes ; Pouso, Manuel António do Rosário ; Correia, Ilídio Joaquim Sobreira ; de Melo-Diogo, DuarteInjectable in situ forming hydrogels have been emerging due to their capacity to perform the direct delivery of therapeutics into the tumor site with minimal off-target leakage. Particularly, physical crosslinked injectable in situ forming hydrogels are appealing due to their straightforward preparation that exploits the native jointing capabilities of specific polymers/materials. However, the features of these hydrogels (e.g., injectability, degradation, swelling) are strongly pre-determined by the physical interactions available on the selected polymers/ materials, occasionally yielding undesired outcomes. Thus, the combination of multiple physical crosslinking cues may allow the preparation of hydrogels with enhanced properties. In this work, a dual-crosslinked injectable in situ forming hydrogel was engineered by combining Pluronic F127/α-Cyclodextrin and Alginate/CaCl2 (i.e., combination of host-guest and electrostatic interactions), being loaded with Doxorubicin (chemotherapeutic drug) and Dopamine-reduced Graphene Oxide (photothermal nano-agent) for application in cancer chemophotothermal therapy. When compared to the single-crosslinked hydrogels, the dual-crosslinking contributed to the assembly of formulations with suitable injectability and improved degradation and water absorption behaviors. Moreover, the dual-crosslinked hydrogels presented a good photothermal capacity (ΔT ≈ 14 ◦C), leading to a 1.18-times enhanced Doxorubicin release. In in vitro cell-based studies, the dual-crosslinked hydrogels exhibited an excellent cytocompatibility towards healthy (normal human dermal fibroblasts) and breast cancer (MCF-7) cells. As importantly, the dual-crosslinked hydrogels were able to mediate a chemophotothermal effect that diminished the cancer cells’ viability to just 23 %. Overall, the developed dualcrosslinked injectable in situ forming hydrogels incorporating Doxorubicin and Dopamine-reduced Graphene Oxide are a promising macroscale system for breast cancer chemo-photothermal therapy.
- Injectable and implantable hydrogels for localized delivery of drugs and nanomaterials for cancer chemotherapy: A reviewPublication . Pouso, Manuel António do Rosário ; Melo, Bruna Daniela Lopes ; Gonçalves, Joaquim; Louro, Ricardo; Mendonça, António; Correia, Ilídio Joaquim Sobreira ; de Melo-Diogo, DuarteMultiple chemotherapeutic strategies have been developed to tackle the complexity of cancer. Still, the outcome of chemotherapeutic regimens remains impaired by the drugs’ weak solubility, unspecific biodistribution and poor tumor accumulation after systemic administration. Such constraints triggered the development of nanomaterials to encapsulate and deliver anticancer drugs. In fact, the loading of drugs into nanoparticles can overcome most of the solubility concerns. However, the ability of systemically administered drug-loaded nanomaterials to reach the tumor site has been vastly overestimated, limiting their clinical translation. The drugs’ and drug-loaded nanomaterials’ systemic administration issues have propelled the development of hydrogels capable of performing their direct/local delivery into the tumor site. The use of these macroscale systems to mediate a tumor-confined delivery of the drugs/drugs-loaded nanomaterials grants an improved therapeutic efficacy and, simultaneously, a reduction of the side effects. The manufacture of these hydrogels requires the careful selection and tailoring of specific polymers/materials as well as the choice of appropriate physical and/or chemical crosslinking interactions. Depending on their administration route and assembling process, these matrices can be classified as injectable in situ forming hydrogels, injectable shear-thinning/selfhealing hydrogels, and implantable hydrogels, each type bringing a plethora of advantages for the intended biomedical application. This review provides the reader with an insight into the application of injectable and implantable hydrogels for performing the tumor-confined delivery of drugs and drug-loaded nanomaterials.
- Insect-based chitin and chitosan from whole body sources and rearing by-products: extraction, physicochemical, structural and bioactivity characterisationPublication . Navarro, Pedro; Ribeiro, José Carlos Reis ; Luís, Ângelo Filipe Santos ; Domingues, Fernanda; Anjos, Ofélia; Cunha, LuisFractionation of edible insects and their rearing by-products can lead to expanded industrial applications and extraction of value-added products. The main goal of this study was to extract chitin and synthesise chitosan from three different insect sources – Tenebrio molitor larvae, adult Acheta domesticus and A. domesticus rearing by-products (legs and wings). Furthermore, the physicochemical, structural, and bioactive properties of insectderived chitin and chitosan were characterised and compared to commercial crustacean-based samples. Chitin was isolated from defatted sources through chemical hydrolysis followed by decolourisation and was deacetylated with a strong alkaline solution to synthesise chitosan. Notably, A. domesticus rearing by-products yielded the highest chitin and chitosan content. Chitin and chitosan derived from insects exhibited physicochemical and structural characteristics consistent with the α-polymorphic form, similar to the commercial samples. Differences were found in surface morphology, with insect-derived samples presenting large and irregular flakes and porosity, while the crustacean-derived samples presented irregularly arranged fibres and a more regular and smoother surface. As for antioxidant activity, although all chitosan samples demonstrated poor DPPH radical scavenging activity, this study showed for the first time that insect-derived chitosan presents lipid peroxidation inhibition ability. All chitosan samples presented antimicrobial activity against different pathogenic bacteria, with K. pneumoniae being the most susceptible strain. Nevertheless, there is potential for enhancement of the biological properties through modifications on the molecular weight and deacetylation degree. This research introduces the potential of cricketrearing by-products as sustainable sources of chitosan with functional bioactive properties.
- Multimodal ionic liquid-based chromatographic supports for an effective RNA purificationPublication . Carapito, Ana Rita; Bernardo, Sandra C.; Pereira, Matheus M.; Neves, Márcia C.; Freire, Mara; Sousa, FaniNucleic acids have been considered interesting molecules to be used as biopharmaceuticals for the treatment of various diseases, in gene therapy strategies. In particular, RNA arises as the most promising approach because it does not require access to the nucleus of cells to exert its function; however, it is quite challenging due to its labile nature. To increase the possibility of translating RNA-based technology to clinical protocols, the biomanufacturing of RNAs has been intensively exploited in the last few years. However, the standard RNA purification processes remain time-consuming and present limitations regarding recovery yield and purity. This work describes the functionalization of chromatographic silica-based supports with four ionic liquids (ILs) composed of functional moieties that can promote distinct interactions with nucleic acids. After an initial screening to evaluate the binding and elution behavior of nucleic acids in the IL-based supports, SSi[C3C3NH2Im]Cl has shown to be the most promising for further purification assays. This support was studied for the RNA purification from different samples (clarified or more complex) and has shown to be highly effective, for all the conditions studied. Generally, it is here presented a new method for RNA isolation in a single step, using an IL-based chromatographic support, able to eliminate the usage of hazardous compounds often included in standard RNA extraction protocols.
- Quorum sensing inhibition evaluation method: An experiment-based microbiology laboratory coursePublication . Luís, Ângelo Filipe Santos ; Domingues, FernandaBacteria have developed a cell-to-cell communication system called quorum sensing (QS), allowing them to regulate group behavior and synchronize the expression of virulence factors, responsible for increasing their infection capacity and resistance to antimicrobials. Although the control of microbial infections through the inhibition of microbial growth has traditionally been the basis of antimicrobial chemotherapy, the emergence of antimicrobial resistance has led to the search for new microbial control strategies, namely through the inhibition of QS. Among the agents studied to inhibit this bacterial communication are essential oils (EO), which are considered very effective QS inhibitors. When searching for new QS inhibitor agents, it is essential to have a cheap and easy-to-perform method that allows the evaluation of this activity. Chromobacterium violaceum is a Gram-negative bacterium that has been widely used as a model organism in QS research laboratories because it produces the violet-colored pigment violacein, which is regulated by QS and is an easily observable and quantifiable characteristic marker. The objective of this work is to describe a method to evaluate the inhibition of the QS using Cymbopogon martinii EO as a potential inhibitory agent for violacein production by C. violaceum, which can be applied in the Microbiology laboratory course as a part of the programs of several science degrees. The proposed method is inexpensive and does not require specific equipment, enabling its easy implementation by the laboratory team and professors.
- Radio Coverage Assessment and Indoor Communication Enhancement in Hospitals: A Case Study at CHUCBPublication . da Silva, Óscar; Teixeira, Emanuel; Corceiro, Ana; Reis, António; Velez, Fernando J.The adoption of wireless medical technologies in hospital environments is often limited by cellular coverage issues, especially in indoor areas with complex structures. This study presents a detailed radio spectrum measurement campaign conducted at the Cova da Beira University Hospital Center (CHUCB), using the NARDA SRM-3006 and R&S®TSME6 equipment. The signal strength and quality of 5G NR, LTE, UMTS, and NB-IoT technologies were evaluated. Critical coverage gaps were identified, particularly at points 17, 19, and 21. Results revealed that operators MEO and NOS dominate coverage, with MEO providing better 5G NR coverage and NOS excelling in LTE signal quality. Based on the results, the localized installation of femtocells is proposed to improve coverage in these areas. The approach was designed to be scalable and replicable, with a planned application at Cumura Hospital (Guinea-Bissau), reinforcing the applicability of the solution in contexts with limited infrastructure. This work provides both technical and clinical contributions to achieving ubiquitous cellular coverage in healthcare settings.
- Renewable Photo-Cross-Linkable Polyester-Based Biomaterials: Synthesis, Characterization, and Cytocompatibility AssessmentPublication . Cernadas, Maria Teresa; Pereira, João; Melo, Bruna Daniela Lopes ; de Melo-Diogo, Duarte; Correia, Ilídio Joaquim Sobreira ; Alves, Patrícia; Calvinho, Paula Cristina Nunes FerreiraTThe present work consist of the synthesis of photo-crosslinkable materials, based on unsaturated polyesters (UPs), synthesized from biobased monomers from renewable sources such as itaconic acid and 1,4- butanediol. The UPs were characterized to assess the influence of polycondensation reaction temperature and cross-linking time on their final properties. For this purpose, different UV irradiation exposure periods were tested. Homogeneous, uniform, and transparent films were obtained after 1, 3, and 5 min of UV exposure. These cross-linked films were then characterized. All materials presented high gel content, which was dependent on the reaction’s temperature. The thermal behaviors of the UPs were shown to be similar. In vitro hydrolytic degradation tests showed that the materials can undergo degradation in phosphate-buffered saline (PBS) at pH 7.4 and 37 °C, ensuring their biodegradability over time. Finally, to assess the applicability of the polyesters as biomaterials, their cytocompatibility was determined by using human dermal fibroblasts.
