Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Antimicrobial functionalization of wool: assessment of the effect of Cecropin-B and [Ala5]-Tritrp7 antimicrobial peptides
    Publication . Mouro, Cláudia; Gouveia, Isabel C.
    This investigation provides a new strategy to impart antimicrobial properties into wool-based materials using Cecropin-B and [Ala5]-Tritrp7 antimicrobial peptides (AMPs). The process was conducted using exhaustion method at 40 °C for 1–3 h. The presence of the AMPs in the modified-wool samples was confirmed by colorimetric assay of Bradford reagent and possible changes in the morphology of the fibers and damage to its surface were analyzed by scanning electron microscopy. Results showed that 1 h were long enough for the functionalization to occur effectively and that the morphology of the fibers was not influenced by the functionalization process. Furthermore, the antimicrobial activity of the AMPs applied on wool was assessment by JIS L 1902-2002 against Staphylococcus aureus (ATCC 6538) and Klebsiella pneumoniae (ATCC 4352). The results showed that both AMPs have a high reduction in bacterial growth (Cecropin-B resulting in 71.67% reduction against S. aureus and 85.95% against K. pneumoniae. While [Ala5]-Tritrp7 resulting in 66.74% reduction against S. aureus and 88.65% against K. pneumoniae).
  • Emulsion Electrospun Fiber Mats of PCL/PVA/Chitosan and Eugenol for Wound Dressing Applications
    Publication . Mouro, Cláudia; Simões, Manuel; Gouveia, Isabel C.
    In recent years, the damaging e ects of antimicrobial resistance relating to wound management and infections have driven the ongoing development of composite wound dressing mats containing natural compounds, such as plant extracts and their derivatives. e present research reports the fabrication of novel electrospun Polycaprolactone (PCL)/Polyvinyl Alcohol (PVA)/Chitosan (CS) ber mats loaded with Eugenol (EUG), an essential oil, known for its therapeutic properties. e electrospun ber mats were prepared via electrospinning from either water-in-oil (W/O) or oil-in-water (O/W) emulsions and characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), total porosity measurements, and water contact angle. e in vitro EUG release pro le and antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa were also evaluated. e obtained results proved that the EUG was loaded e ciently into electrospun PCL/PVA/CS ber mats and the two W/O and O/W emulsions prepared from the PCL/PVA/CS (7 : 3 : 1) and PCL/PVA/CS (3 : 7 : 1) revealed porosity within the ideal range of 60–90%, even when EUG was loaded. e measured contact angle values showed that the O/W emulsion exhibited a more hydrophilic character and the wettability noticeably decreased a¢er adding EUG in both emulsion blends. Furthermore, the electrospun PCL/PVA/CS ber mats demonstrated a rapid release of EUG during the rst 8 hours, which enhanced gradually a¢erward (up to 120 hours). Moreover, an e cient antibacterial activity against S. aureus (inhibition ratios of 92.43% and 83.08%) and P. aeruginosa (inhibition ratios of 94.68% and 87.85%) was displayed and the in vitro cytotoxic assay demonstrated that the normal human dermal broblasts (NHDF) remained viable for at least 7 days, a¢er direct contact with the produced electrospun ber mats. erefore, such ndings support the biocompatibility and suitability of using these EUG-loaded electrospun PCL/PVA/CS ber mats as a new innovative wound dressing material with potential for preventing and treating microbial wound infections.
  • Antimicrobial and antioxidant surface modification toward a new silk-fibroin (SF)-l-Cysteine material for skin disease management
    Publication . Nogueira, Frederico; Granadeiro, Luiza Breitenfeld ; Mouro, Cláudia; Gouveia, Isabel C.
    A novel dressing material – silk fibroin fabric (SF)-l-Cysteine (l-Cys) – is here developed to be used asstandard treatment for atopic dermatitis (AD), which combines comfort, thermic, and tensile strengthproperties of silk materials with antioxidant and antimicrobial effects of l-Cys. A careful understand-ing about the linking strategies is needed in order not to compromise the bioavailability of l-Cys anddeplenish its bioactivity. Durability was also addressed through washing cycles and compared with hos-pital requirements, according to international Standard EN ISO 105-C06:2010. The present research alsoanalyze the interactions between Staphylococcus aureus and SF-l-Cys under simulating conditions of ADand demonstrated the effectiveness of a double covalent grafting, with the importance of SF tyrosine(Tyr) covalent linkage with l-Cys (SF-g-l-Cys/Tyr-g-l-Cys) even after several washing cycles, twenty five,whereas for a disposable application a single covalent mechanism of grafting l-Cys proved to be suffi-cient (SF-g-l-Cys). Results showed effective antimicrobial activities exhibiting higher inhibition ratios of98.65% for SF-g-l-Cys after 5 washing cycles, whereas 97.55% for SF-g-l-Cys/Tyr-g-l-Cys after 25 washingcycles, both at pH 9.5 grafting strategy. Furthermore, it is also reported a non-protumoral effect of l-Cys. Anew advance is herein achieved at the world of medical antimicrobial textiles tailored to address woundmoisture environment and exudate self-cleaning, which may open novel applications as complementarytherapy for AD disease.