Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Construction of an immunosensor for human cytomegalovirus infection diagnosisPublication . Pires, Filipa Andreia Velez; Cabral, Ana Cristina Mendes Dias; Martínez, María Julia ArcosHuman Cytomegalovirus (HCMV) is a herpes virus that establish a lifelong latent infection of the host, so once a person is infected, the virus persists in a state of cellular latency. Following primary infection, HCMV is excreted in body fluids and its transmission occurs through mucous contact and exposure to urine, blood transfusion and organ or bone marrow transplant procedures, being extremely difficult to identify the transmission route. HCMV infection induces no overt disease in healthy carriers, owing to effective immune control, but this infection can be severe or even fatal in immunosuppressed individuals, fetuses and newborns. Furthermore, HCMV is also relatively common among women in reproductive age, with seroprevalence ranging from 45 to 100%. The diagnosis of HCMV disease remains controversial because of the difficulty of separating patients who are asymptomatic but shedding HCMV in body fluids, from patients who have the symptomatic disease. Nowadays the most common methods for diagnosis of HCMV infection are: - serological tests based on IgM and IgG detection; - direct free HCMV detection by viral isolation and viral antigens detection in tissue, urine or saliva samples; and - PCR, which is based on amplification of selected segments of the HCMV genome and its hybridization. However, these methods are disadvantageous to be routinely used in clinical diagnosis as point of care because they require a long time to perform or are costly. Thus, there is a need to develop a method which is fast, effective and inexpensive for this virus diagnosis. As an alternative, the use of capture antibodies against the envelope glycoproteins of HCMV open the possibility of faster immunochemical methods. Glycoprotein B of HCMV (gB) is the dominant antigen in the envelope of HCMV, being possible its determination in body fluids like urine and saliva, where viral loads are higher. In consequence, the development of new methods based on the accurate detection of gB in body fluids, is of great interest. In recent years, electrochemical biosensors were widely used to determine various substances with different properties and for continuous monitoring of biological processes. Bioanalytical assays such as immunoassays (IAs), are also very important in many fields. IAs are based on antibodies ability to form complexes with the corresponding antigen, making them highly specific and selective. Thus, electrochemical immunoassays offer enhanced sensitivities and reduced instrumentation costs compared to their counterparts using other transducing elements. Also, screen-printed electrodes (SPE) contribute to develop miniaturized, easy to handle and reliable IAs devices. In addition, SPEs allow for a high-volume production of electrode systems with uniform size and geometry, ensuring measurement reproducibility at low cost. They are also very versatile, since a wide range of designs and materials can be applied in their construction. The present work describes the development of an alternative method for HCMV gB detection and quantification. It is intended the development of an immunosensor to quantify the presence of gB in urine samples. For the construction of this device we made use of a sandwich type immunoassay, wherein HCMV gB is sandwiched between a primary antibody, previously immobilized on a solid surface, and a labelled secondary antibody. Sandwich immunoassays are currently the most commonly and successfully used, mainly due to their high sensitivity and minimized background signal. Moreover, they can be performed on any kind of sensing surface, being the main criterion for these assays the availability of two antibodies with different binding sites on the target antigens. Three different immunoassays were developed. The first one was an electrochemical immunoassay, gB detection was carried out over electrochemical stripping analysis of silver nanoparticles quantitatively deposited on the immunosensor through catalysis by nanogold labels. Capture anti-gB antibodies were absorbed on screen-printed carbon electrodes, and a secondary anti-gB antibody labelled with gold nanoparticles. Nevertheless, the reproducibility of the method (RSDs ≈ 12%) was not very good owing to the random immobilization of the primary antibody on the working electrode, which resulted in small efficiency of antigen detection. Contributing to the low observed RSD was also the nonspecific deposition of silver on the sensor surface. For these reasons, it was decided the development of another approach to overcome the observed limitations. A spectrophotometric magnetic particle-based enzyme immunoassays (mpEIA) was constructed. The use of magnetic beads (MBs) functionalized with protein G (MBs-prG) as solid surface for primary antibody (mAb1) immobilization allows its oriented attachment, resulting in a more effective recognition of gB. Additionally, they improve the affinity interaction thanks to a faster assay kinetics of the dispersed beads in urine samples. The results obtained with this spectrophotometric mpEIA compared favorably to those obtained in other reports of gB detection in terms of analytical performance. Despite the advantages, ELISA readers cannot be applied as portable devices to make in situ measurements. It was then proposed an adaptation to electrochemical transduction on screen-printed electrodes. This variation aimed the achievement of a simple, sensitive, disposable and portable device. It was maintained the immunoassay scheme based on the analyte protein gB sandwiched between the primary monoclonal antibody and the secondary anti-gB-HCMV HRP labelled antibody. Similarly, magnetic particles functionalized with protein G (MBs-prG), were used. The developed immunosensor was shown to be a portable, fast, accurate, rigorous, low cost and an effective method of detecting gB in human urine samples for the valuable diagnosis/screening of HCMV infections.
- Disposable immunosensor for diagnosis of human cytomegalovirus congenital infectionPublication . Pires, Filipa Andreia Velez; Cabral, Ana Cristina Mendes Dias; Arcos Martínez, Maria JúliaHuman cytomegalovirus is a herpes virus which can cause pneumonia, retinitis, colitis and encephalopathies in immunosuppress individuals, as transplanted ones, persons infected by HIV, and individuals with immature immune system, like fetuses and newborns. In the last ones microcephaly, small body size, hepatomegaly, blindness, deafness and mental retardation can also be observed. This infection is the most frequent cause of embryogenic and fetal pathology induced by a virus. In the actuality, the diagnosis of HCMV is based on clinical and immunologic data. There are several methods for HCMV detection: the virus isolation in fibroblasts culture, the shell-vial method, the PCR technique, the ELISA test and the western blotting technique. However all of them require a long period of time to perform or are costly which is problematic for diagnosis. Therefore, an immunosensor was developed for human cytomegalovirus glycoprotein B detection based on electrochemical stripping analysis of silver nanoparticles. In this sandwich type immunosensor, the silver deposition solution is added to the electrode surface where the gold nanoparticles attached to antibodies, will catalyze the reduction reaction of silver ions, leading to the formation of silver nanoparticles. The higher concentration of analytes means that more amounts of gold nanoparticles are capture on the sensor surface, producing more silver nanoparticles. The silver nanoparticles are dissolved and measured by anodic stripping voltammetry. This method allows a faster and, we expect, a more sensitive way to detect HCMV.