Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens
    Publication . Figueira, Marília I; Carvalho, Tiago; Monteiro, Joana; Cardoso, Henrique J.; Correia, Sara; Vaz, CV; Duarte, Ana Paula; Socorro, Sílvia
    The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
  • Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation
    Publication . Marcelino, Helena; Nogueira, Vanda Cristina Simões; Santos, Cecilia; Quelhas, Patricia; Carvalho, Tiago; Gomes, João Fonseca; Tomás, Joana; Diógenes, Maria José; Sebastião, Ana M; Cascalheira, José
    Brain adenosine concentrations can reach micromolar concentrations in stressful situations such as stroke, neurodegenerative diseases or hypoxic regions of brain tumours. Adenosine can act by receptor-independent mechanism by reversing the reaction catalysed by S-adenosylhomocysteine (SAH) hydrolase, leading to SAH accumulation and inhibition of S-adenosylmethionine (SAM)-dependent methyltransferases. Astrocytes are essential in maintaining brain homeostasis but their pathological activation and uncontrolled proliferation plays a role in neurodegeneration and glioma. Adenosine can affect cell proliferation, but the effect of increased adenosine concentration on proliferation of astrocytes is not clarified and was addressed in present work. Human astrocytes (HA) were treated for 3 days with test drugs. Cell proliferation/viability was assessed by the MTT assay and by cell counting. Cell death was evaluated by assessing lactate dehydrogenase (LDH) release and by western blot analysis of αII-Spectrin cleavage. 30µM-Adenosine caused a 40%±3% (p < .05, n = 5) reduction in cell proliferation/viability, an effect reversed by 2U/ml-adenosine deaminase, but unchanged in the presence of antagonists of any of the adenosine receptors. Adenosine alone did not induce cell death. 100µM-Homocysteine alone caused 16%±3% (p < .05) decrease in HA proliferation. Combined action of adenosine and homocysteine decreased HA proliferation by 76%±4%, an effect higher (p < .05) than the sum of the effect of adenosine and homocysteine alone (56%±5%). The inhibitory effect of adenosine on HA proliferation/viability was mimicked by two adenosine kinase inhibitors and attenuated in the presence of folate (100µM) or SAM (50-100µM). The results suggest that adenosine reduces HA proliferation by a receptor-independent mechanism probably involving reversal of SAH hydrolase-catalysed reaction.