Loading...
31 results
Search Results
Now showing 1 - 10 of 31
- Hawking Radiation and Black Hole Gravitational Back Reaction - A Quantum Geometrodynamical Simplified ModelPublication . Marto, JoãoThe purpose of this paper is to analyse the back reaction problem, between Hawking radiation and the black hole, in a simplified model for the black hole evaporation in the quantum geometrodynamics context. The idea is to transcribe the most important characteristics of the Wheeler-DeWitt equation into a Schrödinger’s type of equation. Subsequently, we consider Hawking radiation and black hole quantum states evolution under the influence of a potential that includes back reaction. Finally, entropy is estimated as a measure of the entanglement between the black hole and Hawking radiation states in this model.
- Classical and quantum cosmology of the little rip abrupt eventPublication . Albarran, Imanol; Bouhmadi Lopez, Mariam; Kiefer, Claus; Marto, João; Moniz, PauloWe analyze from a classical and quantum point of view the behavior of the universe close to a little rip, which can be interpreted as a big rip sent towards the infinite future. Like a big rip singularity, a little rip implies the destruction of all bounded structure in the Universe and is thus an event where quantum effects could be important. We present here a new phantom scalar field model for the little rip. The quantum analysis is performed in quantum geometrodynamics, with the Wheeler-DeWitt equation as its central equation. We find that the little rip can be avoided in the sense of the DeWitt criterion, that is, by having a vanishing wave function at the place of the little rip. Therefore our analysis completes the answer to the question: can quantum cosmology smoothen or avoid the divergent behavior genuinely caused by phantom matter? We show that this can indeed happen for the little rip, similar to the avoidance of a big rip and a little sibling of the big rip.
- Dynamics of Apparent Horizons in Quantum Gravitational CollapsePublication . Tavakoli, Yaser; Dapor, Andrea; Marto, JoãoWe study the gravitational collapse of a massless scalar field within the effective scenario of loop quantum gravity. Classical singularity is avoided and replaced by a quantum bounce in this model. It is shown that, quantum gravity effects predict a threshold scale bellow which no horizon can form as the collapse evolves towards the bounce.
- 3-Form Cosmology: Phantom Behaviour, Singularities and InteractionsPublication . Morais, João; Bouhmadi Lopez, Mariam; Marto, JoãoThe latest cosmological observations by the Planck collaboration (and combined with others) are compatible with a phantom-like behaviour (w < − 1) for the dark energy equation of state that drives the current acceleration of the Universe. With this mindset, we look into models where dark energy is described by a 3-form field minimally coupled to gravity. When compared to a scalar field, these models have the advantage of more naturally accommodating a cosmological-constant and phantom-like behaviours. We show how the latter happens for a fairly general class of positive-valued potentials, and through a dynamical system approach, we find that in such cases the 3-form field leads the Universe into a Little Sibling of the Big Rip singular event into the future. In this work, we explore the possibility of avoiding such singularity via an interaction in the dark sector between cold dark matter and the 3-form field. For the kind of interactions considered, we deduce a condition for replacing the LSBR by a late time de Sitter phase. For specific examples of interactions that meet this condition, we look for distinctive imprints in the statefinder hierarchy { S 3 ( 1 ) ; S 4 ( 1 ) } , { S 3 ( 1 ) ; S 5 ( 1 ) } , and in the growth rate of matter, e ( z ) , through the composite null diagnostic (CND).
- Can Non-Local Interferometry Experiments Reveal A Local Model of Matter?Publication . Marto, João; Croca, J. R.In the following we consider the possibility of interpretating non-local interferometric experiments according to the De Broglie causal model. With the help of a simplified mathematical model based on wavelet analysis it is indeed possible to explain it in a causal way. Furthermore we show the distinction between the two formalisms and discuss some experimental conditions that may make these differences evident.
- Non-slow-roll dynamics in α-attractorsPublication . Kumar, K. Sravan; Marto, João; Moniz, Paulo; Das, SuratnaIn this paper we consider the α−attractor model and study inflation under a non-slow-roll dynamics. More precisely, we follow the approach recently proposed by Gong and Sasaki [1] by means of assuming N=N(phi). Within this framework we obtain a family of functions describing the local shape of the potential during inflation. We study a specific model and find an inflationary scenario predicting an attractor at ns≈0.967 and r≈5.5×10^(−4). We further show that considering a non-slow-roll dynamics, the α−attractor model can be broaden to a wider class of models that remain compatible with value of r<0.1. We further explore the model parameter space with respect to large and small field inflation and conclude that the inflaton dynamics is connected to the α− parameter, which is also related to the Kähler manifold curvature in the supergravity (SUGRA) embedding of this model. We also comment on the stabilization of the inflaton's trajectory.
- Gravitational waves in α-attractorsPublication . Kumar, K. Sravan; Marto, João; Moniz, Paulo; Das, SuratnaWe study inflation in the alpha-attractor model under a non-slow-roll dynamics with an ansatz proposed by Gong & Sasaki of assuming N=N(phi). Under this approach, we construct a class of local shapes of inflaton potential that are different from the T-models. We find this type of inflationary scenario predicts an attractor at n_s~0.967 and r~0.00055. In our approach, the non-slow-roll inflaton dynamics are related to the $\alpha-$parameter which is the curvature of Kähler geometry in the SUGRA embedding of this model.
- Non-local interferometry: a causal explanation by means of local wavelet analysisPublication . Marto, João; Croca, J. R.In the following we consider the possibility of interpretating recent non-local interferometric experiments according to the De Broglie causal model. With the help of a simplified mathematical model based on wavelet analysis it is indeed possible to explain it in a causal way. Furthermore we show the distinctions between the two formalisms and discuss some experimental conditions that may make these differences evident.
- K-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic accelerationPublication . Bouhmadi Lopez, Mariam; Kumar, K. Sravan; Marto, João; Morais, João; Zhuk, AlexanderIn this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K-essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K-essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K-essence models: (i) the pure kinetic K-essence field, (ii) a K-essence with a constant speed of sound and (iii) the K-essence model with the Lagrangian bX+cX2−V(phi). We demonstrate that if the K-essence is coupled, all these K-essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.
- Dilaton Quantum Cosmology with a Schrödinger-like EquationPublication . Fabris, Júlio C.; Falciano, F. T.; Marto, João; Neto, N. Pinto; Moniz, PauloA quantum cosmological model with radiation and a dilaton scalar field is analyzed. The Wheeler–DeWitt equation in the minisuperspace induces a Schrödinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time-dependent, a Bohmian analysis allows to extract a bouncing behavior for the scale factor.