Repository logo
 
Loading...
Profile Picture
Person

Magalhães, Bianca

Search Results

Now showing 1 - 2 of 2
  • Disease Severity Index in Parkinson’s Disease Based on Self-Organizing Maps
    Publication . Araújo, Suellen Munique; Nery, Sabrina Beatriz Mendes; Magalhães, Bianca G.; Almeida, Kelson James; Gaspar, Pedro Dinis
    Parkinson’s disease is a progressive neurodegenerative condition whose prevalence has significantly increased. This work proposes the development of a severity index to classify patients from symptoms, mainly motor ones, using an Artificial Neuronal Network (ANN) trained by the Self-Organizing Maps (SOMs) algorithm. The FOX Insight database was used, which offers data in the form of questionnaires answered by patients or caregivers from all over the world, with information regarding this pathology. After pre-processing the data, a set of 597 questionnaires containing 28 defined questions was selected. The symptoms were individually analyzed after mapping and divided into four classes. In class 1, most symptoms were not present. In class 2, the presence of certain symptoms demonstrated early milestones of the disease. In class 3, symptoms related to the patient’s mobility, in particular pain, stand out among the most reported. In class 4, the intense presence of all symptoms is observed. To test the tool, data were used from some of these patients, who answered the same questionnaire at different times (simulating medical appointments). The presented severity index to classify patients allowed identifying the current stage of the disease allowing the follow-up. This AI-based decision-support tool can help medical professionals to predict the evolution of Parkinson’s disease, which can result in longer life quality of patients, in terms of symptoms and medication requirements.
  • Spot price forecasting for best trading strategy decision support in the Iberian electricity market
    Publication . Magalhães, Bianca G.; Bento, Pedro M. R.; Pombo, José; Calado, M. do Rosário; Mariano, Sílvio J. P S.
    The increasing volatility in electricity markets has reinforced the need for better trading strategies by both sellers and buyers to limit the exposure to losses. Accordingly, this paper proposes an electricity trading strategy based on a mid-term forecast of the average spot price and a risk premium analysis based on this forecast. This strategy can help traders (buyers and sellers) decide whether to trade in the futures market (of varying monthly maturity) or to wait and trade in the spot market. The forecast model consists of an Artificial Neural Network trained with the Long Short Term Memory architecture to predict the average monthly spot prices, using only market price-related data as input variables. Statistical analysis verified the correlation and dependency between variables. The forecast model was trained, validated and tested with price data from the Iberian Electricity Market (MIBEL), in particular the Spanish zone, between January 2015 and August 2019. The last year of this period was reserved for testing the performance of the proposed forecast model and trading strategy. For comparison purposes, the results of a forecasting model trained with the Extreme Learning Machine over the same period are also presented. In addition, the forecasted value of the average monthly spot price was used to perform a risk premium analysis. The results were promising, as they indicated benefits for traders adopting the proposed trading strategy, proving the potential of the forecast model and the risk premium analysis based on this forecast.