Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

GeoBioCiências, GeoTecnologias e GeoEngenharias 2025

Financiador

Autores

Publicações

Assessment of Airport Pavement Condition Index (PCI) Using Machine Learning
Publication . Santos, Bertha; Studart, André; Almeida, Pedro G.
Pavement condition assessment is a fundamental aspect of airport pavement management systems (APMS) for ensuring safe and efficient airport operations. However, conventional methods, which rely on extensive on-site inspections and complex calculations, are often time-consuming and resource-intensive. In response, Industry 4.0 has introduced machine learning (ML) as a powerful tool to streamline these processes. This study explores five ML algorithms (Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), and Support Vector Machine (SVM)) for predicting the Pavement Condition Index (PCI). Using basic alphanumeric distress data from three international airports, this study predicts both numerical PCI values (on a 0–100 scale) and categorical PCI values (3 and 7 condition classes). To address data imbalance, random oversampling (SMOTE—Synthetic Minority Oversampling Technique) and undersampling (RUS) were used. This study fills a critical knowledge gap by identifying the most effective algorithms for both numerical and categorical PCI determination, with a particular focus on validating class-based predictions using relatively small data samples. The results demonstrate that ML algorithms, particularly Random Forest, are highly effective at predicting both the numerical and the three-class PCI for the original database. However, accurate prediction of the seven-class PCI required the application of oversampling techniques, indicating that a larger, more balanced database is necessary for this detailed classification. Using 10-fold cross-validation, the successful models achieved excellent performance, yielding Kappa statistics between 0.88 and 0.93, an error rate of less than 7.17%, and an area under the ROC curve greater than 0.93. The approach not only significantly reduces the complexity and time required for PCI calculation, but it also makes the technology accessible, enabling resource-limited airports and smaller management entities to adopt advanced pavement management practices.

Unidades organizacionais

Descrição

O nosso plano (2025-2029) desenvolve abordagem interdisciplinar para uma gestão inovadora e sustentável dos recursos naturais, garantindo o bem-estar social e a proteção ambiental. O nosso principal objetivo é investigação aplicada e fundamental de matérias-primas primárias para a sustentabilidade ambiental e económica. Para tal vamos melhorar os algoritmos de mapeamento geológico para avaliação e mapeamento de graus metálicos em depósitos minerais e resíduos de mineração, para melhorar os minérios e reutilizar resíduos de mineração para novos produtos. [...]

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia (FCT)

Programa de financiamento

UID 2023/2024

Número da atribuição

04035

ID