| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| Artigo científico | 1.04 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Pavement condition assessment is a fundamental aspect of airport pavement management systems (APMS) for ensuring safe and efficient airport operations. However, conventional methods, which rely on extensive on-site inspections and complex calculations, are often time-consuming and resource-intensive. In response, Industry 4.0 has introduced machine learning (ML) as a powerful tool to streamline these processes. This study explores five ML algorithms (Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), and Support Vector Machine (SVM)) for predicting the Pavement Condition Index (PCI). Using basic alphanumeric distress data from three international airports, this study predicts both numerical PCI values (on a 0–100 scale) and categorical PCI values (3 and 7 condition classes). To address data imbalance, random oversampling (SMOTE—Synthetic Minority Oversampling Technique) and undersampling (RUS) were used. This study fills a critical knowledge gap by identifying the most effective algorithms for both numerical and categorical PCI determination, with a particular focus on validating
class-based predictions using relatively small data samples. The results demonstrate that ML algorithms, particularly Random Forest, are highly effective at predicting both the numerical and the three-class PCI for the original database. However, accurate prediction of the seven-class PCI required the application of oversampling techniques, indicating that a larger, more balanced database is necessary for this detailed classification. Using 10-fold cross-validation, the successful models achieved excellent performance, yielding Kappa statistics between 0.88 and 0.93, an error rate of less than 7.17%, and an area under the ROC curve greater than 0.93. The approach not only significantly reduces the complexity and time required for PCI calculation, but it also makes the technology accessible, enabling resource-limited airports and smaller management entities to adopt advanced pavement management practices.
Description
Keywords
airport pavement management system(APMS) pavement condition index (PCI) machine learning (ML) predictive modeling
Pedagogical Context
Citation
Santos, B.; Studart, A.; Almeida, P. Assessment of Airport Pavement Condition Index (PCI) Using Machine Learning. Appl. Syst. Innov. 2025, 8, 162. https://doi.org/ 10.3390/asi8060162
Publisher
MDPI
