Repository logo
 
Publication

Assessment of Airport Pavement Condition Index (PCI) Using Machine Learning

datacite.subject.fosEngenharia e Tecnologia::Engenharia Civil
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorSantos, Bertha
dc.contributor.authorStudart, André
dc.contributor.authorAlmeida, Pedro G.
dc.date.accessioned2026-01-13T16:08:16Z
dc.date.available2026-01-13T16:08:16Z
dc.date.issued2025-10-24
dc.description.abstractPavement condition assessment is a fundamental aspect of airport pavement management systems (APMS) for ensuring safe and efficient airport operations. However, conventional methods, which rely on extensive on-site inspections and complex calculations, are often time-consuming and resource-intensive. In response, Industry 4.0 has introduced machine learning (ML) as a powerful tool to streamline these processes. This study explores five ML algorithms (Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), and Support Vector Machine (SVM)) for predicting the Pavement Condition Index (PCI). Using basic alphanumeric distress data from three international airports, this study predicts both numerical PCI values (on a 0–100 scale) and categorical PCI values (3 and 7 condition classes). To address data imbalance, random oversampling (SMOTE—Synthetic Minority Oversampling Technique) and undersampling (RUS) were used. This study fills a critical knowledge gap by identifying the most effective algorithms for both numerical and categorical PCI determination, with a particular focus on validating class-based predictions using relatively small data samples. The results demonstrate that ML algorithms, particularly Random Forest, are highly effective at predicting both the numerical and the three-class PCI for the original database. However, accurate prediction of the seven-class PCI required the application of oversampling techniques, indicating that a larger, more balanced database is necessary for this detailed classification. Using 10-fold cross-validation, the successful models achieved excellent performance, yielding Kappa statistics between 0.88 and 0.93, an error rate of less than 7.17%, and an area under the ROC curve greater than 0.93. The approach not only significantly reduces the complexity and time required for PCI calculation, but it also makes the technology accessible, enabling resource-limited airports and smaller management entities to adopt advanced pavement management practices.eng
dc.identifier.citationSantos, B.; Studart, A.; Almeida, P. Assessment of Airport Pavement Condition Index (PCI) Using Machine Learning. Appl. Syst. Innov. 2025, 8, 162. https://doi.org/ 10.3390/asi8060162
dc.identifier.doihttps://doi.org/ 10.3390/asi8060162
dc.identifier.issn25715577
dc.identifier.urihttp://hdl.handle.net/10400.6/19657
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationGeoBioCiências, GeoTecnologias e GeoEngenharias 2025
dc.relation.hasversionhttps://www.mdpi.com/2571-5577/8/6/162?utm_source=researchgate.net&utm_medium=article
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectairport pavement management system(APMS)
dc.subjectpavement condition index (PCI)
dc.subjectmachine learning (ML)
dc.subjectpredictive modeling
dc.titleAssessment of Airport Pavement Condition Index (PCI) Using Machine Learningeng
dc.typeresearch article
dspace.entity.typePublication
oaire.awardTitleGeoBioCiências, GeoTecnologias e GeoEngenharias 2025
oaire.awardURIhttps://sciproj.ptcris.pt/176972UID
oaire.citation.issue162
oaire.citation.titleApplied System Innovation
oaire.citation.volume8
oaire.fundingStreamUID 2023/2024
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSantos
person.familyNameStudart
person.familyNameAlmeida
person.givenNameBertha
person.givenNameAndré
person.givenNamePedro Gabriel de Faria Lapa Barbosa de
person.identifier0000000070515684
person.identifier.ciencia-idBE1A-879F-8282
person.identifier.ciencia-id0A10-5478-084E
person.identifier.ciencia-id1117-C2D6-DA23
person.identifier.orcid0000-0002-5545-892X
person.identifier.orcid0000-0001-5963-9317
person.identifier.orcid0000-0003-2810-5966
person.identifier.scopus-author-id54880406000
person.identifier.scopus-author-id12796214600
relation.isAuthorOfPublication444d1a96-ae0d-4778-93d1-8fcbf30ec96a
relation.isAuthorOfPublication61dc8a06-f108-49b2-ad03-1109fa784caf
relation.isAuthorOfPublication1b3dce01-0969-45a4-a37d-366d76578f94
relation.isAuthorOfPublication.latestForDiscovery444d1a96-ae0d-4778-93d1-8fcbf30ec96a
relation.isProjectOfPublication40987615-287c-40eb-9847-93fcdb990ac1
relation.isProjectOfPublication.latestForDiscovery40987615-287c-40eb-9847-93fcdb990ac1

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
asi-08-00162.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
Artigo científico
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: