Repository logo
 
Loading...
Project Logo
Research Project

Chemical Process Engineering and Forest Products Research Centre

Authors

Publications

Silica Aerogel-Polycaprolactone Scaffolds for Bone Tissue Engineering
Publication . Pontinha, Ana; Moreira, Eliana Barbosa Da Silva; Melo, Bruna L.; Melo-Diogo, Duarte de; Correia, I.J.; Alves, Patrícia
Silica aerogel is a material composed of SiO2 that has exceptional physical properties when utilized for tissue engineering applications. Poly-ε-caprolactone (PCL) is a biodegradable polyester that has been widely used for biomedical applications, namely as sutures, drug carriers, and implantable scaffolds. Herein, a hybrid composite of silica aerogel, prepared with two different silica precursors, tetraethoxysilane (TEOS) or methyltrimethoxysilane (MTMS), and PCL was synthesized to fulfil bone regeneration requirements. The developed porous hybrid biocomposite scaffolds were extensively characterized, regarding their physical, morphological, and mechanical features. The results showed that their properties were relevant, leading to composites with different properties. The water absorption capacity and mass loss were evaluated as well as the influence of the different hybrid scaffolds on osteoblasts’ viability and morphology. Both hybrid scaffolds showed a hydrophobic character (with water contact angles higher than 90°), low swelling (maximum of 14%), and low mass loss (1–7%). hOB cells exposed to the different silica aerogel-PCL scaffolds remained highly viable, even for long periods of incubation (7 days). Considering the obtained results, the produced hybrid scaffolds may be good candidates for future application in bone tissue engineering.
Dextran-Based Injectable Hydrogel Composites for Bone Regeneration
Publication . Alves, Patrícia; Simão, Ana Filipa; Graça, Mariana F. P.; Mariz, Marcos; Correia, I.J.; Ferreira, Paula
Currently, bone infections caused by diseases or injuries are a major health issue. In addition, the conventional therapeutic approaches used to treat bone diseases or injuries present several drawbacks. In the area of tissue engineering, researchers have been developing new alternative therapeutic approaches, such as scaffolds, to promote the regeneration of injured tissues. Despite the advantages of these materials, most of them require an invasive surgical procedure. To overcome these problems, the main focus of this work was to develop scaffolds for bone regeneration, which can be applied using injectable hydrogels that circumvent the use of invasive procedures, while allowing for bone regeneration. Throughout this work, injectable hydrogels were developed based on a natural polymer, dextran, along with the use of two inorganic compounds, calcium β-triphosphate and nanohydroxyapatite, that aimed to reinforce the mechanical properties of the 3D mesh. The materials were chemically characterized considering the requirements for the intended application: the swelling capacity was evaluated, the degradation rate in a simulated physiological environment was assessed, and compression tests were performed. Furthermore, vancomycin was incorporated into the polymeric matrices to obtain scaffolds with antibacterial performance, and their drug release profile was assessed. The cytotoxic profile of the hydrogels was assessed by an MTS assay, using osteoblasts as model cells. The data obtained demonstrated that dextran-based hydrogels were successfully synthesized, with a drug release profile with an initial burst between 50 and 80% of the drug. The hydrogels possess fair biocompatibility. The swelling capacity showed that the stability of the samples and their degradation profile is compatible with the average time period required for bone regeneration (usually about one month) and have a favorable Young’s modulus (200–300 kPa). The obtained hydrogels are well-suited for bone regeneration applications such as infections that occur during implantation or bone graft substitutes with antibiotics.
Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries
Publication . Alves, Patrícia; Luzio, Diana; Sá, Kevin; Correia, I.J.; Ferreira, Paula
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials.
Multimodal ionic liquid-based chromatographic supports for an effective RNA purification
Publication . Carapito, Ana Rita Mugeiro; Bernardo, Sandra C.; Pereira, Matheus M.; Neves, Márcia C.; Freire, Mara G.; Sousa, Fani
Nucleic acids have been considered interesting molecules to be used as biopharmaceuticals for the treatment of various diseases, in gene therapy strategies. In particular, RNA arises as the most promising approach because it does not require access to the nucleus of cells to exert its function; however, it is quite challenging due to its labile nature. To increase the possibility of translating RNA-based technology to clinical protocols, the bio- manufacturing of RNAs has been intensively exploited in the last few years. However, the standard RNA puri- fication processes remain time-consuming and present limitations regarding recovery yield and purity. This work describes the functionalization of chromatographic silica-based supports with four ionic liquids (ILs) composed of functional moieties that can promote distinct interactions with nucleic acids. After an initial screening to evaluate the binding and elution behavior of nucleic acids in the IL-based supports, SSi[C3C3NH2Im]Cl has shown to be the most promising for further purification assays. This support was studied for the RNA purification from different samples (clarified or more complex) and has shown to be highly effective, for all the conditions studied. Generally, it is here presented a new method for RNA isolation in a single step, using an IL-based chromato- graphic support, able to eliminate the usage of hazardous compounds often included in standard RNA extraction protocols.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/00102/2020

ID