Loading...
Research Project
Untitled
Funder
Authors
Publications
IEEE 802.15.4 MAC layer performance enhancement by employing RTS/CTS combined with packet concatenation
Publication . Barroca, Norberto; Borges, Luís M.; Velez, Fernando J.; Chatzimisios, Periklis
IEEE 802.15.4 Medium Access Control (MAC) layer does not include the Request-To-Send/Clear-To-Send (RTS/CTS) handshake mechanism, in order to overcome the hidden node problem that affects Wireless Sensor Networks (WSNs). In this paper we propose and analyse the use of RTS/CTS in IEEE 802.15.4 for the nonbeacon-enable mode. The proposed solution shows that by considering the RTS/CTS mechanism combined with packet concatenation we improve the network performance in terms of maximum throughput, minimum delay and bandwidth effciency. In IEEE 802.15.4 with RTS/CTS, the backoff procedure process is not repeated for each data packet sent unlike the basic access mode of IEEE 802.15.4, but only for each RTS/CTS set. Therefore, the channel utilization is maximized by decreasing the deferral time period before transmitting a data packet. Our work introduces an analytical model capable of accounting the retransmission delay and the maximum number of backoff stages. The successful validation of our analytical model is carried out by comparison against simulation results by using the OMNeT++ simulator.
Block acknowledgment in IEEE 802.15.4 by employing DSSS and CSS PHY layers
Publication . Barroca, Norberto; Borges, Luís M.; Velez, Fernando J.; Chatzimisios, Periklis
The IEEE 802.15.4 standard has been widely accepted as the de facto standard for Wireless Sensor Networks (WSNs), since it provides ultra-low complexity, cost and energy consumption for low-data rate wireless connectivity. However, one of the fundamental reasons for the IEEE 802.15.4 Medium Access Control (MAC) inefficiency is overhead. In the context of our research, we demonstrate that WSNs may benefit from packet concatenation. In this paper we introduce and study the employment of a block acknowledgment mechanisms in order to achieve enhanced channel efficiency in IEEE 802.15.4 nonbeacon-enabled networks for both the Chirp Spread Spectrum (CSS) and Direct Sequence Spread Spectrum (DSSS) Physical (PHY) layers for the 2.4 Industrial, Scientific and Medical (ISM) frequency band. The proposal of the two new innovative MAC sublayer mechanisms can also be considered as a future possible contribution to the standard itself. The throughput and delay performance is mathematically derived under ideal conditions, (i.e., a channel environment without transmission errors). The performance of the proposed schemes is compared against the IEEE 802.15.4 standard through extensive simulations by employing the OMNeT++ simulator. We demonstrate that, for both PHY layers, the network performance is significantly improved in terms of throughput, end-to-end delay and bandwidth efficiency.
Experimental Characterization of Wearable Antennas and Circuits for RF Energy Harvesting in WBANs
Publication . Saraiva, Henrique Morais; Borges, Luís M.; Pinho, Pedro; Gonçalves, Ricardo; Chavez-Santiago, Raul; Barroca, Norberto; Tavares, Jorge; Gouveia, Paulo T.; Carvalho, Nuno Borges; Balasingham, Ilangko; Velez, Fernando J.; Loss, Caroline; Salvado, Rita
Field trials have been performed in Covilhã to identify the spectrum opportunities for radio frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. Based on the identification of the most promising opportunities, a dual-band printed antenna was conceived, operating at GSM bands (900/1800), with gains of 1.8 and 2.06 dBi, and efficiency varying from 77.6 to 82%, for the highest and lowest operating frequency bands, respectively. In this paper, guidelines for the design of RF energy harvesting circuits and choice of textile materials for a wearable antenna are briefly discussed. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with and without impedance matching circuit) responsible for RF energy harvesting. All the three prototypes (1, 2 and 3) can power supply the sensor node for RF received powers of 2 dBm, -3 dBm and -4 dBm, and conversion efficiencies of 6, 18 and 20%, respectively.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BD/66803/2009