Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Sem título

Autores

Publicações

Uniform hyperbolicity revisited: index of periodic points and equidimensional cycles
Publication . Bessa, Mario; Rocha, Jorge; Varandas, Paulo
In this paper, we revisit uniformly hyperbolic basic sets and the dom- ination of Oseledets splittings at periodic points. We prove that peri- odic points with simple Lyapunov spectrum are dense in non-trivial basic pieces of Cr-residual diffeomorphisms on three-dimensional manifolds (r & 1). In the case of the C1-topology, we can prove that either all periodic points of a hyperbolic basic piece for a diffeomor- phism f have simple spectrum C1 -robustly (in which case f has a finest dominated splitting into one-dimensional sub-bundles and all Lya- punov exponent functions of f are continuous in the weak∗ -topology) or it can be C1-approximated by an equidimensional cycle associated to periodic points with robust different signatures. The latter can be used as a mechanism to guarantee the coexistence of infinitely many periodic points with different signatures.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia

Programa de financiamento

5876

Número da atribuição

UID/MAT/00144/2013

ID