Logo do repositório
 
Miniatura indisponível
Publicação

Uniform hyperbolicity revisited: index of periodic points and equidimensional cycles

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
DSIJ2.pdf743.85 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In this paper, we revisit uniformly hyperbolic basic sets and the dom- ination of Oseledets splittings at periodic points. We prove that peri- odic points with simple Lyapunov spectrum are dense in non-trivial basic pieces of Cr-residual diffeomorphisms on three-dimensional manifolds (r & 1). In the case of the C1-topology, we can prove that either all periodic points of a hyperbolic basic piece for a diffeomor- phism f have simple spectrum C1 -robustly (in which case f has a finest dominated splitting into one-dimensional sub-bundles and all Lya- punov exponent functions of f are continuous in the weak∗ -topology) or it can be C1-approximated by an equidimensional cycle associated to periodic points with robust different signatures. The latter can be used as a mechanism to guarantee the coexistence of infinitely many periodic points with different signatures.

Descrição

Palavras-chave

Uniform hyperbolicity Periodic points Finest dominated splitting Oseledets splitting Lyapunov exponents

Contexto Educativo

Citação

Projetos de investigação

Projeto de investigaçãoVer mais
Projeto de investigaçãoVer mais
Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo

Editora

Licença CC

Métricas Alternativas