Logo do repositório
 
Miniatura indisponível
Publicação

The Crank–Nicolson–Galerkin Finite Element Method for a Nonlocal Parabolic Equation with Moving Boundaries

Utilize este identificador para referenciar este registo.

Orientador(es)

Resumo(s)

The aim of this article is to establish the convergence and error bounds for the fully discrete solutions of a class of nonlinear equations of reaction–diffusion nonlocal type with moving boundaries, using a linearized Crank–Nicolson–Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite element methods are investigated.

Descrição

Palavras-chave

Nonlinear parabolic system Nonlocal diffusion term Reaction–diffusion Convergence Numerical simulation Crank–Nicolson Finite element method

Contexto Educativo

Citação

Projetos de investigação

Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo