Repository logo
 
No Thumbnail Available
Publication

Injectable in situ forming hydrogels incorporating dual-nanoparticles for chemo- photothermal therapy of breast cancer cells

Use this identifier to reference this record.
Name:Description:Size:Format: 
2021 Sabino IJP.pdf1.06 MBAdobe PDF Download

Advisor(s)

Abstract(s)

Chemo-photothermal therapy (chemo-PTT) mediated by nanomaterials holds a great potential for cancer treatment. However, the tumor uptake of the systemically administered nanomaterials was recently found to be below 1 %. To address this limitation, the development of injectable tridimensional polymeric matrices capable of delivering nanomaterials directly into the tumor site appears to be a promising approach. In this work, an injectable in situ forming ionotropically crosslinked chitosan-based hydrogel co-incorporating IR780 loaded nanoparticles (IR/BPN) and Doxorubicin (DOX) loaded nanoparticles (DOX/TPN) was developed for application in breast cancer chemo-PTT. The produced hydrogels (IR/BPN@Gel and IR/BPN+DOX/TPN@Gel) displayed suitable physicochemical properties and produced a temperature increase of about 9.1 °C upon exposure to Near Infrared (NIR) light. As importantly, the NIR-light exposure also increased the release of DOX from the hydrogel by 1.7-times. In the in vitro studies, the combination of IR/BPN@Gel with NIR light (photothermal therapy) led to a reduction in the viability of breast cancer cells to 35 %. On the other hand, the non-irradiated IR/BPN+DOX/TPN@Gel (chemotherapy) only diminished cancer cells' viability to 85 %. In contrast, the combined action of IR/BPN+DOX/TPN@Gel and NIR light reduced cancer cells' viability to about 9 %, demonstrating its potential for breast cancer chemo-PTT

Description

Keywords

Localized Delivery IR780 Injectable Hydrogel Doxorubicin Cancer Chemo-Photothermal Therapy

Citation

Organizational Units

Journal Issue

Publisher

Elsevier

CC License

Altmetrics