Loading...
187 results
Search Results
Now showing 1 - 10 of 187
- Hyaluronic acid - Based wound dressings: A reviewPublication . Graça, Mariana F. P.; Miguel, Sónia P.; Cabral, Cátia S. D.; Correia, I.J.Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory response, angiogenesis, and tissue regeneration process. Due to the intrinsic properties of HA (such as biocompatibility, biodegradability and hydrophilic character), it has been used to produce different wound dressings, namely sponges, films, hydrogels, and electrospun membranes. Herein, an overview of the different HA-based wound dressings that have been produced so far is provided as well as the future directions regarding the strategies aimed to improve the mechanical stability of HA-based wound dressings, along with the incorporation of biomolecules intended to ameliorate their biological performance during the healing process.
- Comparative study of the therapeutic effect of Doxorubicin and Resveratrol combination on 2D and 3D (spheroids) cell culture modelsPublication . Barros, Andreia; Costa, Elisabete C.; Nunes, Ana Raquel Santos; Diogo, Duarte Miguel de Melo; Correia, Ilídio Joaquim SobreiraThe assessment of drug-combinations for pancreatic cancer treatment is usually performed in 2D cell cultures. In this study, the therapeutic effect and the synergistic potential of a particular drug-combination towards 2D and 3D cell cultures of pancreatic cancer were compared for the first time. Thus, the effect of Doxorubicin:Resveratrol (DOX:RES) combinations (at molar ratios ranging from 5:1 to 1:5) in the viability of PANC-1 cells cultured as 2D monolayers and as 3D spheroids was analyzed. The results showed that the cells’ viability was more affected when DOX:RES combinations containing higher contents of RES (1:2–1:5 molar ratios) were used. This can be explained by the ability of RES to reduce the P-glycoprotein (P-gp)-mediated efflux of DOX. Further, it was also revealed that the synergic effect of this drug combination was different in 2D and in 3D cell cultures. In fact, despite of the 1:4 and 1:5 DOX:RES ratios being both synergistic for both types of PANC-1 cell cultures, their Combination Indexes (CI) in the monolayers were lower than those attained in spheroids. Overall, the obtained results revealed that the DOX:RES combination is promising for pancreatic cancer treatment and corroborate the emergent need to evaluate drug combinations in 3D cell cultures.
- D-α-tocopheryl polyethylene glycol 1000 succinate functionalized nanographene oxide for cancer therapyPublication . Diogo, Duarte Miguel de Melo; Silva, Cleide Isabel Pais; Costa, Elisabete C.; Louro, Ricardo; Correia, Ilídio Joaquim SobreiraAim: To evaluate the therapeutic capacity of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-functionalized nanographene oxide (nGO) in breast cancer cells. Methods: TPGS-functionalized nGO-based materials were obtained through two different approaches: a simple sonication method and a one-pot hydrothermal treatment. Results: TPGS coating successfully improved the stability of the nGO-based materials. The nanomaterials that underwent the hydrothermal procedure generated a 1.4- to 1.6-fold higher temperature variation under near infrared laser irradiation than those prepared only by sonication. In vitro, the TPGS/nGO derivatives reduced breast cancer cells’ viability and had an insignificant effect on healthy cells. Furthermore, the combined application of TPGS/nGO derivatives and near infrared light generated an improved therapeutic effect. Conclusion: TPGS/nGO derivatives are promising materials for breast cancer phototherapy.
- Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapyPublication . Lima-Sousa, Rita; Alves, Cátia; Melo, Bruna L.; Costa, Francisco J. P.; Nave, Micaela; Moreira, André F.; Mendonça, António; Correia, I.J.; de Melo-Diogo, DuarteProgress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel–sol–gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
- Electrospun polymeric nanofibres as wound dressings: A reviewPublication . Miguel, Sónia P.; Figueira, Daniela Sofia Rodrigues; Simões, Déborah; Ribeiro, MP.; Coutinho, Paula; Ferreira, Paula; Correia, Ilídio Joaquim SobreiraSkin wounds have significant morbidity and mortality rates associated. This is explained by the limited effectiveness of the currently available treatments, which in some cases do not allow the reestablishment of the structure and functions of the damaged skin, leading to wound infection and dehydration. These drawbacks may have an impact on the healing process and ultimately prompt patients’ death. For this reason, researchers are currently developing new wound dressings that enhance skin regeneration. Among them, electrospun polymeric nanofibres have been regarded as promising tools for improving skin regeneration due to their structural similarity with the extracellular matrix of normal skin, capacity to promote cell growth and proliferation and bactericidal activity as well as suitability to deliver bioactive molecules to the wound site. In this review, an overview of the recent studies concerning the production and evaluation of electrospun polymeric nanofibrous membranes for skin regenerative purposes is provided. Moreover, the current challenges and future perspectives of electrospun nanofibrous membranes suitable for this biomedical application are highlighted.
- Thermo- and pH-responsive nano-in-micro particles for combinatorial drug delivery to cancer cellsPublication . Moreira, André; Dias, Diana Rodrigues; Costa, Elisabete C.; Correia, Ilídio Joaquim SobreiraDrug combinatorial therapy has been gaining the scientific community attention as a suitable approach to increase treatments efficacy and promote cancer eradication. In this study, a new pH- and thermo- responsive carrier was developed by combining doxorubicin-loaded gold-core silica shell nanorods with salicylic acid loaded poly (lactic-co-glycolic acid) based microparticles (NIMPS). The obtained results showed that the drugs and nanorods release could be triggered by the near-infrared (NIR) laser irradiation or by the exposition to an acidic environment. The in vitro 2D cell studies showed that the NIMPS are biocompatible and easily uptaken by HeLa cells. In addition, 3D cell culture models revealed that the NIMPS administration, combined with the NIR laser irradiation, was capable of reducing the size of the HeLa spheroids up to 48%. Overall, the attained data support the application of the nano-in-micro spheres as a dual stimuli responsive drug carrier system for the local administration of combined therapies to cervical cancer cells.
- New drug-eluting lenses to be applied as bandages after keratoprosthesis implantationPublication . Carreira, Ana; Ferreira, Paula; Ribeiro, MP.; Correia, Tiago R.; Coutinho, Paula Isabel Teixeira Gonçalves; Correia, Ilídio Joaquim Sobreira; Gil, MariaCorneal tissue is the most commonly transplanted tissue worldwide. This work aimed to develop a new drug-eluting contact lens that may be used as a bandage after keratoprosthesis. During this work, films were produced using poly(vinyl alcohol) (PVA) and chitosan (CS) crosslinked with glyoxal (GL). Vancomycin chlorhydrate (VA) was impregnated in these systems by soaking. Attenuated total reflectance – Fourier transform infrared spectroscopy was used to confirm crosslinking. The cytotoxic and drug release profile, hydrophilicity, thermal and biodegradation as well as swelling capacity of the samples were assessed through in vitro studies. PVA and PVA/CS films were obtained by crosslinking with GL. The films were transparent, flexible with smooth surfaces, hydrophilic and able to load and release vancomycin for more than 8 h. Biodegradation in artificial lachrymal fluid (ALF) with lysozyme at 37 °C showed that mass loss was higher for the samples containing CS. Also, the samples prepared with CS showed the formation of pores which were visualized by SEM. All samples revealed a biocompatible character after 24 h in contact with cornea endothelial cells. As a general conclusion it was possible to determine that the 70PVA/30CS film showed to combine the necessary features to prepare vancomycin-eluting contact lenses to prevent inflammation after corneal substitution.
- Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regenerationPublication . Santos, Carlos Filipe Lopes; Silva, Abílio P.; Lopes, Luís; Pires, Inês; Correia, Ilídio Joaquim SobreiraThe characteristics of sintered β-tricalcium phosphate (β-TCP) scaffolds produced by 3D printing were studied by means of X-ray diffraction, Scanning Electron Microscopy, Fourier transform infrared spectroscopy, uniaxial compression tests and cytotoxicity tests, using human osteoblast cells. The results reported include details of the β-TCP scaffolds' porosity, density, phase stability, mechanical behavior and cytotoxic profile. Collectively, these properties are fundamental for the future application of these scaffolds as bone substitutes for individualized therapy.
- IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapiesPublication . Alves, Cátia; Sousa, Ana Rita Lima; Diogo, Duarte Miguel de Melo; Correia, Ilídio Joaquim SobreiraIR780, a molecule with a strong optical absorption and emission in the near infrared (NIR) region, is receiving an increasing attention from researchers working in the area of cancer treatment and imaging. Upon irradiation with NIR light, IR780 can produce reactive oxygen species as well as increase the body temperature, thus being a promising agent for application in cancer photodynamic and photothermal therapy. However, IR780’s poor water solubility, fast clearance, acute toxicity and low tumor uptake may limit its use. To overcome such issues, several types of nanomaterials have been used to encapsulate and deliver IR780 to tumor cells. This mini-review is focused on the application of IR780 based nanostructures for cancer imaging, and photothermal, photodynamic and combinatorial therapies.
- Microneedle-based delivery devices for cancer therapy: a reviewPublication . Moreira, André; Rodrigues, Ana Carolina Félix; Jacinto, Telma A.; Miguel, Sónia; Costa, Elisabete; Correia, I.J.Macroscale delivery systems that can be locally implanted on the tumor tissue as well as avoid all the complications associated to the systemic delivery of therapeutics have captured researchers' attention, in recent years. Particularly, the microneedle-based devices can be used to efficiently deliver both small and macro-molecules, like chemotherapeutics, proteins, and genetic material, along with nanoparticle-based anticancer therapies. Such capacity prompted the application of microneedle devices for the development of new anticancer vaccines that can permeate the tumor tissue and simultaneously improve the effectiveness of therapeutic agents. Based on the promising results demonstrated by the microneedle systems in the local administration of anticancer therapeutics, this review summarizes the different microneedle formulations developed up to now aimed for application on cancer therapy (mphasizing those produced with polymers). Additionally, the microneedles' general properties, type of therapeutic approach and its main advantages are also highlighted.