Name: | Description: | Size: | Format: | |
---|---|---|---|---|
930.67 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O objectivo deste trabalho é o de apresentar vários métodos numéricos que nos permitem obter
soluções aproximadas para sistemas de equações lineares. Os métodos de Jacobi e de Gauss-Seidel
são deduzidos, as condições de convergência apresentadas. São apresentados alguns exemplos de
aplicação e as soluções aproximadas são comparadas com a solução exacta.
The aim of this work is to present sereval numerical methods that allow us to obtain approximate solutions to systems of linear equations. Jacobi and Gauss-Seidel methods are deduced and their convergence conditions presented. Two examples of application are presented and the approximate solutions are compared with the exact solution.
The aim of this work is to present sereval numerical methods that allow us to obtain approximate solutions to systems of linear equations. Jacobi and Gauss-Seidel methods are deduced and their convergence conditions presented. Two examples of application are presented and the approximate solutions are compared with the exact solution.
Description
Keywords
Gauss-Seidel Jacobi Métodos Numéricos Sistemas de Equações Lineares Algébricas