| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 414.03 KB | Adobe PDF |
Orientador(es)
Resumo(s)
S-structures on Lie algebras, introduced by Vinberg, represent a broad generalization of the notion of gradings by abelian groups. Gradings by, not necessarily reduced, root systems provide many examples of natural S-structures. Here we deal with a situation not covered by these gradings: the short (SL2 × SL2)-structures, where the reductive group is the simplest semisimple but not simple reductive group. The algebraic objects that coordinatize these structures are the J -ternary algebras of Allison, endowed with a nontrivial idempotent.
Descrição
Palavras-chave
S-structures J -ternary álgebras Structurable algebras
Contexto Educativo
Citação
Beites, P.D., Córdova-Martínez, A.S., Cunha, I. et al. Short -structures on Lie algebras. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 45 (2024). https://doi.org/10.1007/s13398-023-01541-4
Editora
Springer Nature
