Repository logo
 
No Thumbnail Available
Publication

Molecular Modelling of a novel G-quadruplex structure and its interaction with ligands

Use this identifier to reference this record.
Name:Description:Size:Format: 
6672_14013.pdf3.37 MBAdobe PDF Download

Abstract(s)

DNA can exist under many different forms. Lately, G-quadruplexes, which are one example of the non-canonical DNA forms, have been getting a lot of attention due to the role they play in certain biological processes and as potential targets for therapeutic interventions. For example, these structures can exist in certain parts of the telomeres, structures responsible for cell replication. In cancer cells, if the enzyme telomerase could be inhibited, by inducing the formation of a G-quadruplex structure in guanine-rich telomere sequences, the spread of cancer cells would cease. For this and other reasons, it becomes important to be able to induce the formation of G-quadruplex structures and/or stabilize them, and one of the ways of doing so consists of targeting these sequences with ligands that have good affinity to G-quadruplex structures. However, few G-quadruplex ligands demonstrated the needed properties to fulfill the clinical needs, and further efforts to determine which would be better suited to target any particular sequence are needed. This work aimed at comparing the affinity to the pre-miR-149 G-quadruplex structure of seven promising ligands found in the literature, through the latest techniques fit for that purpose. The seven ligands tested were: [16]phenN2, [32]phen2N4, phen-DC3, pyridostatin, acridine orange derivatives C8 and C8-NH2 and L-arginine. Firstly, they underwent computational tests, with the molecular structure of the quadruplex and the ligand being simulated, and their optimal binding site and conformation found. Their binding energies were compared, and they underwent molecular dynamics runs to simulate their behavior in an environment with solvent, followed by another binding energy comparison. The trend obtained in order of decreasing binding affinity was: pyridostatin > [32]phen2N4 > [16]phenN2 > Phen-DC3 > L-arginine > C8 > C8-NH2. Biophysical techniques were then performed, to determine the binding affinities experimentally. First, circular dichroism spectroscopy and melting studies (performed on four ligands) established the following trend: C8 > pyridostatin > C8-NH2 > [16]phenN2. Fluorescence spectroscopy titration (performed on three) revealed a similar trend: C8 > C8-NH2 > [16]phenN2. Lastly, affinity chromatography experiments were held to test how other DNA sequences would bind to C8-NH2. The results revealed that the ligand has better binding affinity with parallel quadruplexes over antiparallel ones, and poor binding with a duplex sequence. Overall, the best ligands identified for binding to the G-quadruplex structure were the acridine orange derivatives C8 and C8-NH2, and pyridostatin. These three ligands should be considered prime candidates for further research in this area.
ADN pode existir sob a forma de diversas estruturas, contrariamente ao que a vasta maioria da população pensa, ao imaginar a dupla hélice de Watson e Crick. Uma das formas que tem sido mais investigada ultimamente consiste no G-quadruplex. Esta estrutura não canónica do DNA ocorre quando guaninas se emparelham e organizam em estruturas cíclicas através de pontes de hidrogénio Hoogsteen, chamadas G-quartetos. Estas estruturas formam-se por empilhamento p-p entre elas próprias, originando o G-quadruplex, desde que haja um catião (preferivelmente K+) para assumir uma localização central entre todos os quartetos. Estas estruturas desempenham funções importantes a nível de regulação da transcrição e replicação do DNA. Alguns estudos indicam também que podem ser relevantes a nível de manutenção do DNA, e que várias secções do DNA humano se encontram num estado de equilíbrio entre a forma de G-quadruplex e duplex. São também considerados alvos para certas abordagens terapêuticas a nível do cancro. Por exemplo, vários oncogenes como c-kit e c-myc têm a capacidade de formar G-quadruplexes nos seus promotores. Controlando a forma que estes genes assumem, seria possível controlar a sua transcrição, e possivelmente impedir a formação de cancro. Outra possibilidade cinge-se à inibição da telomerase, uma enzima responsável pela replicação celular, que está sobreexpressa em células cancerígenas. Se uma parte do telómero assumir uma estrutura em G-quadruplex, a ação desta enzima fica inibida, efetivamente parando a progressão do cancro. Portanto, torna-se necessário induzir e estabilizar a formação de estruturas do G-quadruplex. A estratégia é utilizar ligandos que interajam por interações intermoleculares de forma a estabilizar a estrutura do G-quadruplex, e outra topologia que esteja em equilíbrio. No entanto, analisando a literatura, conclui-se que apenas alguns grupos de ligandos são efetivamente ligandos de G-quadruplex. Este trabalho de investigação teve como objetivo comparar 7 ligandos promissores da estrutura de G-quadruplex designada por pre-miR-149 literatura. Os ligandos selecionados foram macrociclos derivados de fenantrolina ([16]phenN2, [32]phen2N4, Phen-DC3, e derivados de laranja de acridina C8 e C8-NH2. Determinou-se a afinidade e a estabilização destes ligandos com a estrutura do RNA G-quadruplex, a pre-miR-149. Isso será feito em duas etapas principais. Primeiro, foram realizadas simulações computacionais para determinar quais os ligandos mais promissores e quais os seus métodos de interação com a estrutura G-quadruplex. Estas dividiram-se em três passos: primeiro, foram geradas as estruturas da sequência e de cada ligando em software adequado. Segundo, foram feitas simulações de docking de modo a averiguar os locais de ligação de cada ligando ao G-quadruplex, e a conformação e interações entre o ligando e o quadruplex, sendo também calculadas energias de ligação entre o ligando e o G-quadruplex. Finalmente, foram feitas simulações de dinâmica molecular sobre como essa conformação evoluiria num ambiente fisiológico simulado e calculadas novas energias de ligação, que comparadas entre si, revelam diferenças de afinidades entre os ligandos. Após estas técnicas computacionais, foram executadas técnicas biofísicas, como espetroscopia de dicroísmo circular e estudos de desnaturação térmica, e espectroscopia de fluorescência para determinar experimentalmente as afinidades de cada ligando para com a estrutura escolhida. Foram também executadas experiências de cromatografia de afinidade para determinar o comportamento de um ligando para com sequência do RNA G-quadruplex, a pre-miR-149. O programa usado para avaliar as conformações iniciais gerou estruturas demasiado rígidas e pouco flexíveis com os ligandos macrocíclicos [16]phenN2 e [32]phen2N4. As energias de ligação obtidas revelaram a nível de afinidade a seguinte ordem decrescente: piridostatina > [32]phen2N4 > [16]phenN2 > PhenDC3 > L-arginina > C8 > C8-NH2. Esta tendência não foi a mesma verificada experimentalmente, e logo, foi descartada. A nível destas experiências, retiram-se maioritariamente apenas as conformações dos ligandos que não são macrociclos. A nível das experiências de dicroísmo circular mencionadas, as variações de temperatura de desnaturação térmica ligando-quadruplex foram diferentes,verificando-se a seguinte ordem: C8 > piridostatina > C8-NH2 > [16]phenN2. Seguidamente, foram realizadas titulações por espectroscopia de fluorescência as quais revelaram a seguinte tendência: C8 > C8-NH2 > [16]phenN2. De notar que apenas quatro dos sete ligandos ([16]phenN2, [32]phen2N4, C8 and C8-NH2) possuíam fluorescência intrínseca, e que desses, apenas estes três puderam ser selecionados. Estes resultados mostraram que a piridostatina, e derivados de laranja de acridina C8 e C8-NH2 apresentaram maior afinidade para esta estrutura de G-quadruplex. Por último, os resultados de cromatografia de afinidade revelaram que o ligando C8-NH2 tem maior afinidade com o RNA G-quadruplex pre-miR-149 . Das seis sequências testadas, três delas (c-myc, c-kit e pre-miR-149) formam G-quadruplexes com topologia paralela, e tiveram tempos de retenção mais altos. Outras sequências (TBA e AG23) formam G-quadruplexes com topologia antiparalela, e mostram tempos de retenção mais baixos. A sequência ds26 (duplex) teve o tempo de retenção mais baixo. Conclui-se que este ligando tem maior especificidade para com G-quadruplexes com topologia paralela em detrimento do duplex. As simulações de docking corroboram esta conclusão. Deste modo, conclui-se que os melhores ligandos a nível de afinidade para com a sequência pre-miR-149 são os derivados de laranja de acridina C8 e C8-NH2 e a piridostatina, de modo que futura investigação nesta área deve considerar estes três como fortes candidatos a ligandos de RNA G-quadruplex.

Description

Keywords

Affinity Chromatography Circular Dichroism Fluorescence Spectroscopy G-Quadruplex Molecular Modelling Pre-Mir-149

Citation

Research Projects

Organizational Units

Journal Issue