dc.contributor.author | Ferreira, Dário | |
dc.contributor.author | Ferreira, Sandra S. | |
dc.contributor.author | Nunes, Célia | |
dc.contributor.author | Mexia, João T. | |
dc.date.accessioned | 2020-02-07T16:59:13Z | |
dc.date.available | 2020-02-07T16:59:13Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Mixed models whose variance–covariance matrices are the positive definite linear combinations of pairwise orthogonal orthogonal projection matrices have orthogonal block structure. Here, we will obtain uniformly minimum-variance unbiased estimators for the relevant parameters when normality is assumed and we show that those for estimable vectors are, in general, uniformly best linear unbiased estimators. This is, they are best linear unbiased estimators whatever the variance components. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1007/978-3-319-76605-8_19 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.6/9148 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.subject | Mixed models | pt_PT |
dc.subject | Orthogonal block structures | pt_PT |
dc.title | Optimal Estimators in Mixed Models with Orthogonal Block Structures | pt_PT |
dc.type | book part | |
dspace.entity.type | Publication | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00212%2F2013/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00297%2F2013/PT | |
oaire.citation.endPage | 276 | pt_PT |
oaire.citation.startPage | 271 | pt_PT |
oaire.fundingStream | 5876 | |
oaire.fundingStream | 5876 | |
person.familyName | Ferreira | |
person.familyName | Ferreira | |
person.familyName | Nunes | |
person.familyName | Mexia | |
person.givenName | Dário | |
person.givenName | Sandra | |
person.givenName | Célia | |
person.givenName | João | |
person.identifier | 1454084 | |
person.identifier | R-000-3NA | |
person.identifier | R-000-7FX | |
person.identifier.ciencia-id | 9B1C-6DF8-2872 | |
person.identifier.ciencia-id | E01A-BAE7-2B14 | |
person.identifier.ciencia-id | AC1F-3CA0-75FE | |
person.identifier.ciencia-id | 0A1B-09AC-0E39 | |
person.identifier.orcid | 0000-0001-9095-0947 | |
person.identifier.orcid | 0000-0002-9209-7772 | |
person.identifier.orcid | 0000-0003-0167-4851 | |
person.identifier.orcid | 0000-0001-8620-0721 | |
person.identifier.rid | H-1231-2016 | |
person.identifier.scopus-author-id | 37088452300 | |
person.identifier.scopus-author-id | 37088374700 | |
person.identifier.scopus-author-id | 57194580125 | |
person.identifier.scopus-author-id | 6603673040 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.embargofct | Copyright cedido à editora no momento da publicação | pt_PT |
rcaap.rights | closedAccess | pt_PT |
rcaap.type | bookPart | pt_PT |
relation.isAuthorOfPublication | a46ed4b5-aea7-4dcb-bbbf-f2219d3a3cb9 | |
relation.isAuthorOfPublication | 476a0b22-7679-47cb-afe3-7f772abd7ba1 | |
relation.isAuthorOfPublication | 6c089279-689d-4566-b2ee-797ddbefbeab | |
relation.isAuthorOfPublication | 3579587b-b3c6-4af2-94fb-a9304279ac94 | |
relation.isAuthorOfPublication.latestForDiscovery | 3579587b-b3c6-4af2-94fb-a9304279ac94 | |
relation.isProjectOfPublication | ea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9 | |
relation.isProjectOfPublication | 18e0da40-2991-4f4d-8a7d-58d43cdf7302 | |
relation.isProjectOfPublication.latestForDiscovery | ea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2018 - Optimal Estimators in Mixed Models with Orthogonal Block Structures. Stochastic Modeling, Recent Studies on Risk Analysis and Statistical Modeling.pdf
- Size:
- 625.73 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: