Name: | Description: | Size: | Format: | |
---|---|---|---|---|
263.41 KB | Adobe PDF |
Advisor(s)
Abstract(s)
Mixed linear models are a versatile and powerful tool for analysing data collected in experiments in several areas. Amixed model is a model with orthogonal block structure, OBS, when its variance–covariance matrix is ofall the positive semi-definite linear combinations of known pairwise orthogo-nal orthogonal projection matrices that add up to the identity matrix. Models with commutative orthogonal block structure, COBS, are a special case of OBS in which the orthogonal projection matrix on the space spanned by the mean vector commutes with the variance–covariance matrix.
Using the algebraic structure of COBS, based on Commuta-tive Jordan algebras of symmetric matrices, and the Carte-sian product we build up complex models from simpler ones through joining, in order to analyse together models obtained independently. This commutativity condition of COBS is a necessary and sufficient condition for the least square esti-mators, LSE, to be best linear unbiased estimators, BLUE, whatever the variance components. Since joining COBS we obtain new COBS, the good properties of estimators hold for the joined models.
Description
Keywords
Jordan algebra Mixed models Models with commutative orthogonal block structure Models joining