Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.91 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A reentrada atmosférica é classificada como a fase mais crítica do trajeto realizado por um veículo durante uma missão aeroespacial. Esta fase envolve um elevado risco, pondo em causa a integridade estrutural do veículo bem como a vida dos tripulantes.
Para que esta fase seja bem-sucedida, numa primeira abordagem ao problema tem que se delimitar muito bem a área através da qual a aeronave poderá descrever uma possível trajetória de reentrada, sem que daí possam advir quaisquer problemas, ou seja, desenvolver um corredor de reentrada. Sendo englobadas nestes limites as variáveis referentes à atitude do veículo, pois é através destas que se consegue controlar toda a trajetória e minimizar possíveis riscos subjacentes.
Tendo por base esta linha de pensamentos, ao longo deste trabalho, foram desenvolvidos dois métodos, um que se baseia num controlador integral (seguimento indireto) e o outro utilizando um controlo de seguimento direto do vetor de estado.
Contudo, neste trabalho foram aplicados ambos os métodos, caso contrário, não seria possível controlar todas as variáveis de controlo. Para além disso, permitiu comparar os resultados e com isso salientar as lacunas e capacidades inerentes a cada um deles.
Por fim, considerando que os objetivos foram alcançados, é possível afirmar que esta simulação pode ser aplicada a um caso real.
The atmospheric reentry is classified as the most critical phase of the vehicle journey during an aerospace mission. This phase involves a high risk, threatening the structural integrity of the vehicle as well as the crew safety. For this phase to be well succeeded, the interval in which the aircraft could describe a possible trajectory needs to be well defined (with strict boundaries), in order to avoid any kind of possible conflict, such as developing an entry corridor. The aircraft control variables must be in accordance with the boundaries mentioned before, since they control the trajectory and can minimize damage and possible risks. According to this line of thought, two control methods were developed, the first based on an integral controller (direct tracking) and the second using a direct tracking control of the state vector. However, both methods were applied in this work, otherwise it wouldn’t be possible to control all of the control variables. Furthermore, it’s allowed to compare results between both methods and reveal the pros and cons of each one. Lastly, taking in account that all of the objectives were achieved, it is possible to claim that this simulation can be applied in a real case study.
The atmospheric reentry is classified as the most critical phase of the vehicle journey during an aerospace mission. This phase involves a high risk, threatening the structural integrity of the vehicle as well as the crew safety. For this phase to be well succeeded, the interval in which the aircraft could describe a possible trajectory needs to be well defined (with strict boundaries), in order to avoid any kind of possible conflict, such as developing an entry corridor. The aircraft control variables must be in accordance with the boundaries mentioned before, since they control the trajectory and can minimize damage and possible risks. According to this line of thought, two control methods were developed, the first based on an integral controller (direct tracking) and the second using a direct tracking control of the state vector. However, both methods were applied in this work, otherwise it wouldn’t be possible to control all of the control variables. Furthermore, it’s allowed to compare results between both methods and reveal the pros and cons of each one. Lastly, taking in account that all of the objectives were achieved, it is possible to claim that this simulation can be applied in a real case study.
Description
Keywords
Atitude do Veículo Controladores. Corredor de Reentrada Reentrada Atmosférica Trajetória