Repository logo
 
Publication

Quality Evaluation of Machine Learning-based Point Cloud Coding Solutions

dc.contributor.authorPrazeres, João
dc.contributor.authorRodrigues, Rafael
dc.contributor.authorPereira, Manuela
dc.contributor.authorPinheiro, Antonio M. G.
dc.date.accessioned2023-05-24T08:30:36Z
dc.date.available2023-05-24T08:30:36Z
dc.date.issued2022
dc.description.abstractIn this paper, a quality evaluation of three point cloud coding solutions based on machine learning technology is presented, notably, ADLPCC, PCC_GEO_CNN, and PCGC, as well as LUT_SR, which uses multi-resolution Look-Up Tables. Moreover, the MPEG G-PCC was used as an anchor. A set of six point clouds, representing both landscapes and objects were coded using the five encoders at different bit rates, and a subjective test, where the distorted and reference point clouds were rotated in a video sequence side by side, is carried out to assess their performance. Furthermore, the performance of point cloud objective quality metrics that usually provide a good representation of the coded content is analyzed against the subjective evaluation results. The obtained results suggest that some of these metrics fail to provide a good representation of the perceived quality, and thus are not suitable to evaluate some distortions created by machine learning-based solutions. A comparison between the analyzed metrics and the type of represented scene or codec is also presented.pt_PT
dc.description.sponsorshipThis research was funded by the Portuguese FCT-Fundação para a Ciência e Tecnologia under the project UIDB/50008/2020, PLive X-0017-LX-20, and by operation Centro-01-0145-FEDER-000019 - C4 - Centro de Competencias em Cloud Computing.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.doi10.1145/3552457.3555730pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/13346
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationInstituto de Telecomunicações
dc.relation.publisherversionhttps://dl.acm.org/doi/pdf/10.1145/3552457.3555730pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectPoint Cloudspt_PT
dc.subjectMachine Learningpt_PT
dc.subjectQuality evaluationpt_PT
dc.subjectCodingpt_PT
dc.titleQuality Evaluation of Machine Learning-based Point Cloud Coding Solutionspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT
oaire.citation.endPage65pt_PT
oaire.citation.startPage57pt_PT
oaire.citation.titleAssociation for Computing Machinerypt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameCasanova Prazeres
person.familyNameMendes Rodrigues
person.familyNamePereira
person.familyNamePinheiro
person.givenNameJoão Pedro
person.givenNameJorge Rafael
person.givenNameManuela
person.givenNameAntonio
person.identifier.ciencia-id441A-CABD-41E0
person.identifier.ciencia-idD112-43CA-98E0
person.identifier.ciencia-id0515-7E9C-B97F
person.identifier.ciencia-id2218-265E-17D2
person.identifier.orcid0000-0002-5553-0231
person.identifier.orcid0000-0002-9481-9601
person.identifier.orcid0000-0002-8648-6464
person.identifier.orcid0000-0002-5968-9901
person.identifier.ridB-2723-2012
person.identifier.scopus-author-id35248984200
person.identifier.scopus-author-id8420644500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication2eea9b7c-9999-4864-aae3-4a58e5aa999e
relation.isAuthorOfPublication16431ade-58b1-4db3-849b-718dd28e15bf
relation.isAuthorOfPublicationb89b2bbc-525d-4a6d-8a41-6ad7b81fa511
relation.isAuthorOfPublication94e6047a-198a-41bd-bd6c-b0f21708d8f9
relation.isAuthorOfPublication.latestForDiscovery2eea9b7c-9999-4864-aae3-4a58e5aa999e
relation.isProjectOfPublication5a9bd4c8-57a9-46c4-95dc-a5e5c220c117
relation.isProjectOfPublication.latestForDiscovery5a9bd4c8-57a9-46c4-95dc-a5e5c220c117

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ACMMM2022_QEoPCMLBCS_workshop.pdf
Size:
9.14 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: