Name: | Description: | Size: | Format: | |
---|---|---|---|---|
9.14 MB | Adobe PDF |
Advisor(s)
Abstract(s)
In this paper, a quality evaluation of three point cloud coding solutions based on machine learning technology is presented, notably, ADLPCC, PCC_GEO_CNN, and PCGC, as well as LUT_SR, which uses multi-resolution Look-Up Tables. Moreover, the MPEG G-PCC was used as an anchor. A set of six point clouds, representing both landscapes and objects were coded using the five encoders at different bit rates, and a subjective test, where the distorted and reference point clouds were rotated in a video sequence side by side, is carried out to assess their performance. Furthermore, the performance of point cloud objective quality metrics that usually provide a good representation of the coded content is analyzed against the subjective evaluation results. The obtained results suggest that some of these metrics fail to provide a good representation of the perceived quality, and thus are not suitable to evaluate some distortions created by machine learning-based solutions. A comparison between the analyzed metrics and the type of represented scene or codec is also presented.
Description
Keywords
Point Clouds Machine Learning Quality evaluation Coding