Loading...
11 results
Search Results
Now showing 1 - 10 of 11
- Audiovisual Quality of Live Music Streaming over Mobile Networks using MPEG-DASHPublication . Rodrigues, Rafael; Pocta, Peter; Melvin, Hugh; Bernardo, Marco V.; Pereira, Manuela; Pinheiro, Antonio M. G.The MPEG-DASH protocol has been rapidly adopted by most major network content providers and enables clients to make informed decisions in the context of HTTP streaming, based on network and device conditions using the available media representations. A review of the literature on adaptive streaming over mobile shows that most emphasis has been on adapting the video quality whereas this work examines the trade-off between video and audio quality. In particular, subjective tests were undertaken for live music streaming over emulated mobile networks with MPEG-DASH. A group of audio/video sequences was designed to emulate varying bandwidth arising from network congestion, with varying trade-off between audio and video bit rates. Absolute Category Rating was used to evaluate the relative impact of both audio and video quality in the overall Quality of Experience (QoE). One key finding from the statistical analysis of Mean Opinion Scores (MOS) results using Analysis of Variance indicates that providing reduced audio quality has a much lower impact on QoE than reducing video quality at similar total bandwidth situations. This paper also describes an objective model for audiovisual quality estimation that combines the outcomes from audio and video metrics into a joint parametric model. The correlation between predicted and subjective MOS was computed using several outcomes (Pearson and Spearman correlation coefficients, Root Mean Square Error (RMSE) and epsilon-insensitive RMSE). The obtained results indicate that the proposed approach is a viable solution for objective audiovisual quality assessment in the context of live music streaming over mobile network.
- Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis?Publication . Certaines, Jacques De; Larcher, Thibaut; Duda, Dorota; Azzabou, Noura; Eliat, Pierre-Antoine; Escudero, Luis M.; Pinheiro, Antonio M. G.; Yang, Guanyu; Coatrieux, Jean-Louis; Snezkho, Eduard; Shukelovich, Alexey; Pereira, Manuela; Lerski, RichardSeveral previous clinical or preclinical studies using computerized texture analysis of MR Images have demonstrated much more clinical discrimination than visual image analysis by the radiologist. In muscular dystrophy, a discriminating power has been already demonstrated with various methods of texture analysis of magnetic resonance images (MRI-TA). Unfortunately, a scale gap exists between the spatial resolutions of histological and MR images making a direct correlation impossible. Furthermore, the effect of the various histological modifications on the gray level of each pixel is complex and cannot be easily analyzed. Consequently, clinicians will not accept the use of MRI-TA in routine practice if TA remains a “black box” without clinical correspondence at a tissue level. A goal therefore of the multicenter European COST action MYO-MRI is to optimize MRI-TA methods in muscular dystrophy and to elucidate the histological meaning of MRI textures.
- Quality comparison of the HEVC and VP9 encoders performancePublication . Fernandes, Pedro; Bernardo, Marco; Pinheiro, Antonio M. G.; Fiadeiro, Paulo; Pereira, ManuelaThis paper reports a comparison between two recent video codecs, namely the HEVC and the VP9, using High Definition Video Sequences encoded with different bit rates. A subjective test for the evaluation of the provided Quality of Experience is reported. The video sequences were shown to a panel of subjects on a High Definition LED display and the subjective tests were performed using a Single Stimulus Methodology. The results shown that the HEVC encoder provides a better visual quality on low bit rates than the VP9. Similar performance was obtained for visually lossless conditions, although the HEVC requires lower bit rates to reach that level. Moreover, the correlation of the subjective evaluation and three tested objective metrics (PSNR, SSIM, and FSIM) revealed a good representation of the subjective results, particularly the SSIM and the FSIM metrics.
- Motion estimation with chessboard pattern prediction strategyPublication . Amirpour, Hadi; Ghanbari, Mohammad; Pinheiro, Antonio M. G.; Pereira, ManuelaDue to high correlations among the adjacent blocks, several algorithms utilize movement information of spatially and temporally correlated neighboring blocks to adapt their search patterns to that information. In this paper, this information is used to define a dynamic search pattern. Each frame is divided into two sets, black and white blocks, like a chessboard pattern and a different search pattern, is defined for each set. The advantage of this definition is that the number of spatially neighboring blocks is increased for each current block and it leads to a better prediction for each block. Simulation results show that the proposed algorithm is closer to the Full-Search algorithm in terms of quality metrics such as PSNR than the other state-of-the-art algorithms while at the same time the average number of search points is less.
- A Two-Step Segmentation Method for Breast Ultrasound Masses Based on Multi-resolution AnalysisPublication . Rodrigues, Rafael; Braz, Rui; Pereira, Manuela; Moutinho, José; Pinheiro, Antonio M. G.Breast ultrasound images have several attractive properties that make them an interesting tool in breast cancer detection. However, their intrinsic high noise rate and low contrast turn mass detection and segmentation into a challenging task. In this article, a fully automated two-stage breast mass segmentation approach is proposed. In the initial stage, ultrasound images are segmented using support vector machine or discriminant analysis pixel classification with a multiresolution pixel descriptor. The features are extracted using non-linear diffusion, bandpass filtering and scale-variant mean curvature measures. A set of heuristic rules complement the initial segmentation stage, selecting the region of interest in a fully automated manner. In the second segmentation stage, refined segmentation of the area retrieved in the first stage is attempted, using two different techniques. The AdaBoost algorithm uses a descriptor based on scale-variant curvature measures and non-linear diffusion of the original image at lower scales, to improve the spatial accuracy of the ROI. Active contours use the segmentation results from the first stage as initial contours. Results for both proposed segmentation paths were promising, with normalized Dice similarity coefficients of 0.824 for AdaBoost and 0.813 for active contours. Recall rates were 79.6% for AdaBoost and 77.8% for active contours, whereas the precision rate was 89.3% for both methods.
- Assessment of speckle denoising filters for digital holography using subjective and objective evaluation modelsPublication . Fonseca, Elsa; Fiadeiro, Paulo; Bernardo, Marco V.; Pinheiro, Antonio M. G.; Pereira, ManuelaDigital holography is an emerging imaging technique for displaying and sensing three dimensional objects. The perceived image quality of a hologram is frequently corrupted by speckle noise due to coherent illumination. Although several speckle noise reduction methods have been developed so far, there are scarce quality assessment studies to address their performance and they typically focus solely on objective metrics. However, these metrics do not reflect the visual quality perceived by a human observer. In this work, the performance of four speckle reduction algorithms, namely the nonlocal means, the Lee, the Frost and the block matching 3D filters, with varying parameterizations, were subjectively evaluated. The results were ranked with respect to the perceived image quality to obtain the mean opinion scores using pairwise comparison. The correlation between the subjective results and twenty different no-reference objective quality metrics was evaluated. The experiment indicates that block matching 3D and Lee are the preferred filters, depending on hologram characteristics. The best performing objective metrics were identified for each filter.
- Point cloud quality evaluation: Towards a definition for test conditionsPublication . Cruz, Luís; Dumic, Emil; Alexiou, Evangelos; Prazeres, João; Duarte, Rafael; Pereira, Manuela; Pinheiro, Antonio M. G.; Ebrahimi, TouradjRecently stakeholders in the area of multimedia representation and transmission have been looking at plenoptic technologies to improve immersive experience. Among these technologies, point clouds denote a volumetric information representation format with important applications in the entertainment, automotive and geographical mapping industries. There is some consensus that state-of-the-art solutions for efficient storage and communication of point clouds are far from satisfactory. This paper describes a study on point cloud quality evaluation, conducted in the context of JPEG Pleno to help define the test conditions of future compression proposals. A heterogeneous set of static point clouds in terms of number of points, geometric structure and represented scenarios were selected and compressed using octree-pruning and a projection-based method, with three different levels of degradation. The models were comprised of both geometrical and color information and were displayed using point sizes large enough to ensure observation of watertight surfaces. The stimuli under assessment were presented to the observers on 2D displays as animations, after defining suitable camera paths to enable visualization of the models in their entirety and realistic consumption. The experiments were carried out in three different laboratories and the subjective scores were used in a series of correlation studies to benchmark objective quality metrics and assess inter-laboratory consistency.
- Quality Evaluation of Machine Learning-based Point Cloud Coding SolutionsPublication . Prazeres, João; Rodrigues, Rafael; Pereira, Manuela; Pinheiro, Antonio M. G.In this paper, a quality evaluation of three point cloud coding solutions based on machine learning technology is presented, notably, ADLPCC, PCC_GEO_CNN, and PCGC, as well as LUT_SR, which uses multi-resolution Look-Up Tables. Moreover, the MPEG G-PCC was used as an anchor. A set of six point clouds, representing both landscapes and objects were coded using the five encoders at different bit rates, and a subjective test, where the distorted and reference point clouds were rotated in a video sequence side by side, is carried out to assess their performance. Furthermore, the performance of point cloud objective quality metrics that usually provide a good representation of the coded content is analyzed against the subjective evaluation results. The obtained results suggest that some of these metrics fail to provide a good representation of the perceived quality, and thus are not suitable to evaluate some distortions created by machine learning-based solutions. A comparison between the analyzed metrics and the type of represented scene or codec is also presented.
- Holographic representation: Hologram plane vs. object planePublication . Bernardo, Marco V.; Fernandes, Pedro; Arrifano, Ângelo Miguel; Antonini, Marc; Fonseca, Elsa; Fiadeiro, Paulo; Pinheiro, Antonio M. G.; Pereira, ManuelaDigital holography allows the recording, storage and subsequent reconstruction of both amplitude and phase of the light field scattered by an object. This is accomplished by recording interference patterns that preserve the properties of the original object field essential for 3D visualization, the so-called holograms. Digital holography refers to the acquisition of holograms with a digital sensor, typically a CCD or a CMOS camera, and to the reconstruction of the 3D object field using numerical methods. In the current work, the different representations of digital holographic information in the hologram and in the object planes are studied. The coding performance of the different complex field representations, notably Amplitude-Phase and Real-Imaginary, in both the hologram plane and the object plane, is assessed using both computer generated and experimental holograms. The HEVC intra main coding profile is used for the compression of the different representations in both planes, either for experimental holograms or computer generated holograms. The HEVC intra compression in the object plane outperforms encoding in the hologram plane. Furthermore, encoding computer generated holograms in the object plane has a larger benefit than the same encoding over the experimental holograms. This difference was expected, since experimental holograms are affected by a larger negative influence of speckle noise, resulting in a loss of compression efficiency. This work emphasizes the possibility of holographic coding on the object plane, instead of the common encoding in the hologram plane approach. Moreover, this possibility allows direct visualization of the Object Plane Amplitude in a regular 2D display without any transformation methods. The complementary phase information can easily be used to render 3D features such as depth map, multi-view or even holographic interference patterns for further 3D visualization depending on the display technology.
- MPEG DASH - some QoE-based insights into the tradeoff between audio and video for live music concert streaming under congested network conditionsPublication . Rodrigues, Rafael; Pocta, Peter; Melvin, Hugh; Pereira, Manuela; Pinheiro, Antonio M. G.The rapid adoption of MPEG-DASH is testament to its core design principles that enable the client to make the informed decision relating to media encoding representations, based on network conditions, device type and preferences. Typically, the focus has mostly been on the different video quality representations rather than audio. However, for device types with small screens, the relative bandwidth budget difference allocated to the two streams may not be that large. This is especially the case if high quality audio is used, and in this scenario, we argue that increased focus should be given to the bit rate representations for audio. Arising from this, we have designed and implemented a subjective experiment to evaluate and analyses the possible effect of using different audio quality levels. In particular, we investigate the possibility of providing reduced audio quality so as to free up bandwidth for video under certain conditions. Thus, the experiment was implemented for live music concert scenarios transmitted over mobile networks, and we suggest that the results will be of significant interest to DASH content creators when considering bandwidth tradeoff between audio and video.