Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.37 MB | Adobe PDF |
Authors
Abstract(s)
A atual crise climática tem levado à adoção de políticas para uma gestão mais responsável
dos recursos naturais. Uma dessas políticas tem se refletido no investimento em fontes de
energia renováveis e, devido ao crescimento considerável que estas sofreram, torna-se
necessário procurar também soluções que permitam gerir os resíduos que irão resultar da
desativação das várias infraestruturas quando estas atingirem o seu fim de ciclo de vida,
como por exemplo, dos materiais compósitos das pás de rotor de aerogeradores eólicos.
O objetivo da presente dissertação é aplicar uma abordagem de Economia Circular ao
problema do fim do ciclo de vida das pás de rotor, através do ensaio de uma metodologia de
reciclagem de laminados de fibras, semelhantes aos encontrados nas pás de rotor, que
consiste na queima, a diferentes tempos e temperaturas. Através da fabricação manual de
laminados com estas fibras e respetiva caracterização mecânica associada ao seu ensaio,
procurou-se estudar formas para a reinserção das fibras recicladas num novo ciclo de vida,
fechando o loop dos materiais associados às pás de rotor.
Quanto à sua caracterização, nos ensaios de tração as melhores propriedades, tensão,
rigidez e deformação, em comparação com o laminado de controlo, correspondem aos
tempos mais curtos de queima de cada temperatura ensaiada, no entanto, no caso dos
ensaios de flexão em 3 pontos isto não se verificou. Nestes ensaios destacaram-se pelas suas
propriedades, em comparação com o laminado de controlo, principalmente pela sua tensão,
os laminados de fibras recuperadas a: 400ºC durante 180min, 600ºC durante 60min. Estes
novos laminados foram ainda ensaiados à fluência e à relaxação de tensões, para 50% da
sua tensão, tendo sido obtidos valores semelhantes aos do controlo.
Os laminados das fibras recuperadas às temperaturas de 400 ºC e 600 ºC apresentaram
boas características mecânicas, o que poderá permitir a sua reutilização no fabrico de outros
materiais, por exemplo, em peças não estruturais na indústria automóvel, visto que perdem
até 70% da sua tensão, enquanto que as fibras recuperadas a 800ºC apresentam uma
degradação excessiva para serem reaproveitadas.
The current climate crisis has led to the adoption of policies for a more responsible management of natural resources. This adoption also involves investment in renewable energy sources and, due to the considerable growth that these have suffered, it has become necessary to seek solutions that allow the management of the waste that will result from the deactivation of the various infrastructures when they reach their end-of-life cycle. life, for example, of the composite materials of the rotor blades of wind turbines. The objective of this dissertation is to apply a Circular Economy approach to the problem of the end of the life cycle of rotor blades, through the testing of a methodology for recycling fibre laminates, similar to those found in rotor blades, which consists of burning, at different times and temperatures. Through the manual manufacture of laminates with these fibres and the respective mechanical characterization associated with their testing, we sought to open the way for the reinsertion of recycled fibres in a new life cycle, closing the loop of materials associated with rotor blades. As for its characterization, in the tensile tests the best properties, tension, stiffness and deformation, in comparison with the control laminate, correspond to the shortest burning times of each temperature tested, however, in the case of flexural tests in 3 points this was not verified. In these tests, the laminates of recovered fibres that stood out for their properties, compared to the control laminate, mainly for their tension were 400ºC for 180min, 600ºC for 60min. These new laminates were also tested for creep and stress relaxation, at 50% of their tension, and values similar to those of the control were obtained. The laminates of fibres recovered from 400 °C and 600 °C burning at temperatures have good mechanical characteristics, which may allow their reuse in the manufacture of other materials, for example, in non-structural parts in the automotive industry, since they lose up to 70% of its tension, while the fibres recovered at 800ºC present an excessive degradation to be reused.
The current climate crisis has led to the adoption of policies for a more responsible management of natural resources. This adoption also involves investment in renewable energy sources and, due to the considerable growth that these have suffered, it has become necessary to seek solutions that allow the management of the waste that will result from the deactivation of the various infrastructures when they reach their end-of-life cycle. life, for example, of the composite materials of the rotor blades of wind turbines. The objective of this dissertation is to apply a Circular Economy approach to the problem of the end of the life cycle of rotor blades, through the testing of a methodology for recycling fibre laminates, similar to those found in rotor blades, which consists of burning, at different times and temperatures. Through the manual manufacture of laminates with these fibres and the respective mechanical characterization associated with their testing, we sought to open the way for the reinsertion of recycled fibres in a new life cycle, closing the loop of materials associated with rotor blades. As for its characterization, in the tensile tests the best properties, tension, stiffness and deformation, in comparison with the control laminate, correspond to the shortest burning times of each temperature tested, however, in the case of flexural tests in 3 points this was not verified. In these tests, the laminates of recovered fibres that stood out for their properties, compared to the control laminate, mainly for their tension were 400ºC for 180min, 600ºC for 60min. These new laminates were also tested for creep and stress relaxation, at 50% of their tension, and values similar to those of the control were obtained. The laminates of fibres recovered from 400 °C and 600 °C burning at temperatures have good mechanical characteristics, which may allow their reuse in the manufacture of other materials, for example, in non-structural parts in the automotive industry, since they lose up to 70% of its tension, while the fibres recovered at 800ºC present an excessive degradation to be reused.
Description
Keywords
Reciclagem de Materiais Compósitos Compósitos de Fibra de Vidro Economia Circular Pás de Rotor de Aerogeradores Reciclagem Térmica