Departamento de Matemática
Permanent URI for this community
Browse
Browsing Departamento de Matemática by advisor "Antontsev, Stanislav Nikolaevich"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Método dos elementos finitos para problemas com fronteiras livresPublication . Duque, José Carlos Matos; Antontsev, Stanislav Nikolaevich; Almeida, Rui Manuel PiresNeste trabalho pretende-se fazer um estudo sobre a aplicação do método dos elementos nitos a diversos problemas de reação-difusão com fronteiras livres. Para se obter estimativas do erro e simulações representativas é necessário obter alguns resultados teóricos sobre regularidade e algumas propriedades físicas das soluções. Neste sentido, o outro objetivo deste trabalho é o estabelecimento de resultados teóricos relativos a problemas em aberto. O primeiro problema a ser estudado é a equação parabólica seguinte: ut = div(juj (x;t)ru) + f(x; t); x 2 Rd; t 2]0; T]: Como o problema pode ser degenerado, utiliza-se um problema aproximado, regularizado atrav és da introdução de um parâmetro ". Demonstra-se, sob algumas condições em e f que a solução fraca do problema aproximado converge para a solução fraca do problema inicial, quando o parâmetro " tende para zero. São calculadas soluções discretas utilizando o método dos elementos nitos contínuo no espaço e descontínuo no tempo e é provada a convergência destas soluções para a solução fraca do problema inicial. Estuda-se também a aplicação do método da malha móvel a esta equação considerando-a num domínio livre em R2. É desenvolvido um conjunto de subrotinas em Matlab que permitem calcular e representar gra camente soluções aproximadas de vários problemas de reacção-difus ão com fronteiras livres. A discretização espacial é de nida por uma partição do domínio em triângulos. Em cada elemento nito, a solução é aproximada por uma função seccionalmente polinomial de grau r 1 utilizando polinómios interpoladores de Lagrange em coordenadas de área. Os vértices dos triângulos podem mover-se segundo um sistema de equações diferenciais parciais que é adicionado ao problema. Posteriormente, deduz-se uma equação para mover os vértices da fronteira. O sistema resultante é convertido num sistema de equações diferenciais ordinárias no tempo, que é resolvido utilizando um integrador apropriado. Os integrais que surgem são calculados utilizando a quadratura de Gauss. Finalmente, são apresentados alguns resultados de aplicação. O outro problema estudado é o sistema não linear da forma ( ut = a1(l1(u); l2(v)) u + 1jujp2u + f1(x; t) vt = a2(l1(u); l2(v)) v + 2jvjp2v + f2(x; t) ; x 2 Rd; t 2]0; T]; onde a1 e a2 são funções positivas e Lipschitz-contínuas, l1 e l2 são formas lineares contínuas, 1; 2 0 e p 2. Prova-se a existência e unicidade de soluções fortes, assim como, algumas propriedades de localização, nomeadamente a existência de tempo de espera e a localização estável. Demonstra-se, impondo algumas condições em p e fi, que as soluções deste sistema podem decair de forma exponencial ou polinomial ou até extinguirem-se em tempo nito. O sistema é discretizado utilizando o método dos elementos nitos de Galerkin no espaço e um método de Euler linearizado no tempo. Prova-se a convergência das soluções discretas e obtém- -se a ordem de convergência em função dos parâmetros da discretização. No nal, o método é implementado em ambiente Matlab e são apresentados alguns resultados numéricos.