Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Identification of Daily Activites and Environments Based on the AdaBoost Method Using Mobile Device DataPublication . Ferreira, José M.; Pires, Ivan; Marques, Gonçalo; Garcia, Nuno M.; Zdravevski, Eftim; Lameski, Petre; Flórez-Revuelta, Francisco; Spinsante, SusannaUsing the AdaBoost method may increase the accuracy and reliability of a framework for daily activities and environment recognition. Mobile devices have several types of sensors, including motion, magnetic, and location sensors, that allow accurate identification of daily activities and environment. This paper focuses on the review of the studies that use the AdaBoost method with the sensors available in mobile devices. This research identified the research works written in English about the recognition of daily activities and environment recognition using the AdaBoost method with the data obtained from the sensors available in mobile devices that were published between 2012 and 2018. Thus, 13 studies were selected and analysed from 151 identified records in the searched databases. The results proved the reliability of the method for daily activities and environment recognition, highlighting the use of several features, including the mean, standard deviation, pitch, roll, azimuth, and median absolute deviation of the signal of motion sensors, and the mean of the signal of magnetic sensors. When reported, the analysed studies presented an accuracy higher than 80% in recognition of daily activities and environments with the Adaboost method.
- Approach for the Development of a Framework for the Identification of Activities of Daily Living Using Sensors in Mobile DevicesPublication . Pires, Ivan; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco; Spinsante, SusannaSensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature.
- Activities of Daily Living and Environment Recognition Using Mobile DevicesPublication . Ferreira, José M.; Pires, Ivan; Marques, Gonçalo; Garcia, Nuno M.; Zdravevski, Eftim; Lameski, Petre; Flórez-Revuelta, Francisco; Spinsante, Susanna; Xu, LinaThe recognition of Activities of Daily Living (ADL) using the sensors available in off-the-shelf mobile devices with high accuracy is significant for the development of their framework. Previously, a framework that comprehends data acquisition, data processing, data cleaning, feature extraction, data fusion, and data classification was proposed. However, the results may be improved with the implementation of other methods. Similar to the initial proposal of the framework, this paper proposes the recognition of eight ADL, e.g., walking, running, standing, going upstairs, going downstairs, driving, sleeping, and watching television, and nine environments, e.g., bar, hall, kitchen, library, street, bedroom, living room, gym, and classroom, but using the Instance Based k-nearest neighbour (IBk) and AdaBoost methods as well. The primary purpose of this paper is to find the best machine learning method for ADL and environment recognition. The results obtained show that IBk and AdaBoost reported better results, with complex data than the deep neural network methods.
- Android Library for Recognition of Activities of Daily Living: Implementation Considerations, Challenges, and SolutionsPublication . Pires, Ivan; Teixeira, Maria Cristina Canavarro; Pombo, Nuno; Garcia, Nuno M.; Flórez-Revuelta, Francisco; Spinsante, Susanna; Goleva, Rossitza; Zdravevski, EftimBackground: Off-the-shelf-mobile devices have several sensors available onboard that may be used for the recognition of Activities of Daily Living (ADL) and the environments where they are performed. This research is focused on the development of Ambient Assisted Living (AAL) systems, using mobile devices for the acquisition of the different types of data related to the physical and physiological conditions of the subjects and the environments. Mobile devices with the Android Operating Systems are the least expensive and exhibit the biggest market while providing a variety of models and onboard sensors. Objective: This paper describes the implementation considerations, challenges and solutions about a framework for the recognition of ADL and the environments, provided as an Android library. The framework is a function of the number of sensors available in different mobile devices and utilizes a variety of activity recognition algorithms to provide a rapid feedback to the user. Methods: The Android library includes data fusion, data processing, features engineering and classification methods. The sensors that may be used are the accelerometer, the gyroscope, the magnetometer, the Global Positioning System (GPS) receiver and the microphone. The data processing includes the application of data cleaning methods and the extraction of features, which are used with Deep Neural Networks (DNN) for the classification of ADL and environment. Throughout this work, the limitations of the mobile devices were explored and their effects have been minimized. Results: The implementation of the Android library reported an overall accuracy between 58.02% and 89.15%, depending on the number of sensors used and the number of ADL and environments recognized. Compared with the results available in the literature, the performance of the library reported a mean improvement of 2.93%, and they do not differ at the maximum found in prior work, that based on the Student’s t-test. Conclusion: This study proves that ADL like walking, going upstairs and downstairs, running, watching TV, driving, sleeping and standing activities, and the bedroom, cooking/kitchen, gym, classroom, hall, living room, bar, library and street environments may be recognized with the sensors available in off-the-shelf mobile devices. Finally, these results may act as a preliminary research for the development of a personal digital life coach with a multi-sensor mobile device commonly used daily.