Loading...
23 results
Search Results
Now showing 1 - 10 of 23
- Classical and quantum cosmology of the little rip abrupt eventPublication . Albarran, Imanol; Bouhmadi Lopez, Mariam; Kiefer, Claus; Marto, João; Moniz, PauloWe analyze from a classical and quantum point of view the behavior of the universe close to a little rip, which can be interpreted as a big rip sent towards the infinite future. Like a big rip singularity, a little rip implies the destruction of all bounded structure in the Universe and is thus an event where quantum effects could be important. We present here a new phantom scalar field model for the little rip. The quantum analysis is performed in quantum geometrodynamics, with the Wheeler-DeWitt equation as its central equation. We find that the little rip can be avoided in the sense of the DeWitt criterion, that is, by having a vanishing wave function at the place of the little rip. Therefore our analysis completes the answer to the question: can quantum cosmology smoothen or avoid the divergent behavior genuinely caused by phantom matter? We show that this can indeed happen for the little rip, similar to the avoidance of a big rip and a little sibling of the big rip.
- Conformal GUT inflation, proton lifetime and non-thermal leptogenesisPublication . Kumar, K. Sravan; Moniz, PauloIn this paper, we generalize Coleman-Weinberg (CW) inflation in grand unified theories (GUTs) such as $\text{SU}(5)$ and $\text{SO}(10)$ by means of considering two complex singlet fields with conformal invariance. In this framework, inflation emerges from a spontaneously broken conformal symmetry. The GUT symmetry implies a potential with a CW form, as a consequence of radiative corrections. The conformal symmetry flattens the above VEV branch of the CW potential to a Starobinsky plateau. As a result, we obtain $n_{s}\sim 1-\frac{2}{N}$ and $r\sim \frac{12}{N^2}$ for $N\sim 50-60$ e-foldings. Furthermore, this framework allow us to estimate the proton lifetime as $\tau_{p}\lesssim 10^{40}$ years, whose decay is mediated by the superheavy gauge bosons. Moreover, we implement a type I seesaw mechanism by weakly coupling the complex singlet, which carries two units of lepton number, to the three generations of singlet right handed neutrinos (RHNs). The spontaneous symmetry breaking of global lepton number amounts to the generation of neutrino masses. We also consider non-thermal leptogenesis in which the inflaton dominantly decays into heavy RHNs that sources the observed baryon asymmetry. We constrain the couplings of the inflaton field to the RHNs, which gives the reheating temperature as $10^{6}\text{ GeV}\lesssim T_{R}<10^{9}$ GeV.
- Modified Saez-Ballester scalar-tensor theory from 5D space-timePublication . Rasouli, S. M. M.; Moniz, PauloIn this paper, we bring together the five-dimensional Saez-Ballester~(SB) scalar-tensor theory [1] and the induced-matter-theory~(IMT) setting [2], to obtain a modified SB theory (MSBT) in four dimensions. Specifically, by using an intrinsic dimensional reduction procedure into the SB field equations in five-dimensions, a MSBT is obtained onto a hypersurface orthogonal to the extra dimension. This four-dimensional MSBT is shown to bear distinctive new features in contrast to the usual corresponding SB theory as well as to IMT and the Modified Brans-Dicke Theory (MBDT)~\cite{RFM14}. It should be emphasized that the herein appealing solutions can emerge solely from the geometrical reductional process, from presence also of extra dimension(s) and not from any ad-hoc matter either in the bulk or on the hypersurface. Subsequently, we apply the herein MSBT to cosmology and consider an extended spatially flat FLRW geometry in a five-dimensional vacuum space-time. After obtaining the exact solutions in the bulk, we proceed to construct, by means of the MSBT setting, the corresponding dynamic, on the four-dimensional hypersurface. More precisely, we obtain the (SB) components of the induced matter, including the induced scalar potential terms. We retrieve two different classes of solutions. Concerning the first class, we show that the MSBT yields a barotropic equation of state for the induced perfect fluid. We then investigate vacuum, dust, radiation, stiff fluid and false vacuum cosmologies for this scenario and contrast the results with those obtained in the standard SB theory, IMT and BD theory. Regarding the second class solutions, we show that the scale factor behaves similar to a de Sitter (DeS) model. However, in our MSBT setting, this behavior is assisted by non-vanishing induced matter instead, without any a priori cosmological constant.
- Quantum cosmology of scalar-tensor theories and self-adjointnessPublication . Almeida, Carla; Batista, António B.; Fabris, Júlio C.; Moniz, PauloIn this paper, the problem of the self-adjointness for the case of a quantum minisuperspace Hamiltonian retrieved from a Brans-Dicke (BD) action is investigated. Our matter content is presented in terms of a perfect fluid, onto which the Schutz's formalism will be applied. We use the von Neumann theorem and the similarity with the Laplacian operator in one of the variables to determine the cases where the Hamiltonian is self-adjoint and if it admits self-adjoint extensions. For the latter, we study which extension is physically more suitable.
- Non-slow-roll dynamics in α-attractorsPublication . Kumar, K. Sravan; Marto, João; Moniz, Paulo; Das, SuratnaIn this paper we consider the α−attractor model and study inflation under a non-slow-roll dynamics. More precisely, we follow the approach recently proposed by Gong and Sasaki [1] by means of assuming N=N(phi). Within this framework we obtain a family of functions describing the local shape of the potential during inflation. We study a specific model and find an inflationary scenario predicting an attractor at ns≈0.967 and r≈5.5×10^(−4). We further show that considering a non-slow-roll dynamics, the α−attractor model can be broaden to a wider class of models that remain compatible with value of r<0.1. We further explore the model parameter space with respect to large and small field inflation and conclude that the inflaton dynamics is connected to the α− parameter, which is also related to the Kähler manifold curvature in the supergravity (SUGRA) embedding of this model. We also comment on the stabilization of the inflaton's trajectory.
- Gravitational waves in α-attractorsPublication . Kumar, K. Sravan; Marto, João; Moniz, Paulo; Das, SuratnaWe study inflation in the alpha-attractor model under a non-slow-roll dynamics with an ansatz proposed by Gong & Sasaki of assuming N=N(phi). Under this approach, we construct a class of local shapes of inflaton potential that are different from the T-models. We find this type of inflationary scenario predicts an attractor at n_s~0.967 and r~0.00055. In our approach, the non-slow-roll inflaton dynamics are related to the $\alpha-$parameter which is the curvature of Kähler geometry in the SUGRA embedding of this model.
- Dilaton Quantum Cosmology with a Schrödinger-like EquationPublication . Fabris, Júlio C.; Falciano, F. T.; Marto, João; Neto, N. Pinto; Moniz, PauloA quantum cosmological model with radiation and a dilaton scalar field is analyzed. The Wheeler–DeWitt equation in the minisuperspace induces a Schrödinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time-dependent, a Bohmian analysis allows to extract a bouncing behavior for the scale factor.
- Improved dynamics and gravitational collapse of tachyon field coupled with a barotropic fluidPublication . Marto, João; Tavakoli, Yaser; Moniz, PauloWe consider a spherically symmetric gravitational collapse of a tachyon field with an inverse square potential, which is coupled with a barotropic fluid. By employing an holonomy correction imported from loop quantum cosmology, we analyse the dynamics of the collapse within a semiclassical description. Using a dynamical system approach, we find that the stable fixed points given by the standard general relativistic setting turn into saddle points in the present context. This provides a new dynamics in contrast to the black hole and naked singularities solutions appearing in the classical model. Our results suggest that classical singularities can be avoided by quantum gravity effects and are replaced by a bounce. By a thorough numerical studies we show that, depending on the barotropic parameter $\gamma$, there exists a class of solutions corresponding to either a fluid or a tachyon dominated regimes. Furthermore, for the case $\gamma \sim 1$, we find an interesting tracking behaviour between the tachyon and the fluid leading to a dust-like collapse. In addition, we show that, there exists a threshold scale which determines when an outward energy flux emerges, as a non-singular black hole is forming, at the corresponding collapse final stages.
- Inflationary Universe in Deformed Phase Space ScenarioPublication . Rasouli, Seyed Meraj Mousavi; Saba, Nasim; Farhoudi, Mehrdad; Marto, João; Moniz, PauloWe consider a noncommutative (NC) inflationary model with a homogeneous scalar field minimally coupled to gravity. The particular NC inflationary setting produces entirely new consequences. We first analyze the free field case and subsequently examine the situation where the scalar field is subjected to a polynomial and exponential potentials. We propose to use a canonical deformation between momenta, in a spatially flat FLRW universe, and while the Friedmann equation remains unaffected the Friedmann acceleration equation (and thus the Klein-Gordon equation) is modified by an extra term linear in the NC parameter. This concrete noncommutativity on the momenta allows interesting dynamics that other NC models seem not to allow. Let us be more precise. This extra term behaves as the sole explicit pressure that under the right circumstances implies a period of accelerated expansion of the universe. We find that in the absence of the scalar field potential, and in contrast with the commutative case, in which the scale factor always decelerates, we obtain an inflationary phase for small negative values of the NC parameter. Subsequently, the period of accelerated expansion is smoothly replaced by an appropriate deceleration phase providing an interesting model regarding the graceful exit problem in inflationary models. Moreover, in the case of the free scalar field, we show that not only the horizon problem is solved but also there is some resemblance between the evolution equation of the scale factor associated to our model and that for the $R^2$ (Starobinsky) inflationary model. Therefore, our herein NC model not only can be taken as an appropriate scenario to get a successful kinetic inflation, but also is a convenient setting to obtain inflationary universe possessing the graceful exit when scalar field potentials are present.
- Gravitational collapse with tachyon field and barotropic fluidPublication . Tavakoli, Yaser; Marto, João; Ziaie, Amir Hadi; Moniz, PauloA particular class of space-time, with a tachyon field, ϕ, and a barotropic fluid constituting the matter content, is considered herein as a model for gravitational collapse. For simplicity, the tachyon potential is assumed to be of inverse square form i.e., V(ϕ)∼ϕ^(−2). Our purpose, by making use of the specific kinematical features of the tachyon, which are rather different from a standard scalar field, is to establish the several types of asymptotic behavior that our matter content induces. Employing a dynamical system analysis, complemented by a thorough numerical study, we find classical solutions corresponding to a naked singularity or a black hole formation. In particular, there is a subset where the fluid and tachyon participate in an interesting tracking behaviour, depending sensitively on the initial conditions for the energy densities of the tachyon field and barotropic fluid. Two other classes of solutions are present, corresponding respectively, to either a tachyon or a barotropic fluid regime. Which of these emerges as dominant, will depend on the choice of the barotropic parameter, γ. Furthermore, these collapsing scenarios both have as final state the formation of a black hole.
- «
- 1 (current)
- 2
- 3
- »