Loading...
39 results
Search Results
Now showing 1 - 10 of 39
- New drug-eluting lenses to be applied as bandages after keratoprosthesis implantationPublication . Carreira, Ana; Ferreira, Paula; Ribeiro, MP.; Correia, Tiago R.; Coutinho, Paula Isabel Teixeira Gonçalves; Correia, Ilídio Joaquim Sobreira; Gil, MariaCorneal tissue is the most commonly transplanted tissue worldwide. This work aimed to develop a new drug-eluting contact lens that may be used as a bandage after keratoprosthesis. During this work, films were produced using poly(vinyl alcohol) (PVA) and chitosan (CS) crosslinked with glyoxal (GL). Vancomycin chlorhydrate (VA) was impregnated in these systems by soaking. Attenuated total reflectance – Fourier transform infrared spectroscopy was used to confirm crosslinking. The cytotoxic and drug release profile, hydrophilicity, thermal and biodegradation as well as swelling capacity of the samples were assessed through in vitro studies. PVA and PVA/CS films were obtained by crosslinking with GL. The films were transparent, flexible with smooth surfaces, hydrophilic and able to load and release vancomycin for more than 8 h. Biodegradation in artificial lachrymal fluid (ALF) with lysozyme at 37 °C showed that mass loss was higher for the samples containing CS. Also, the samples prepared with CS showed the formation of pores which were visualized by SEM. All samples revealed a biocompatible character after 24 h in contact with cornea endothelial cells. As a general conclusion it was possible to determine that the 70PVA/30CS film showed to combine the necessary features to prepare vancomycin-eluting contact lenses to prevent inflammation after corneal substitution.
- Reduced graphene oxide–reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regenerationPublication . Cabral, Cátia S. D.; Melo-Diogo, Duarte de; Ferreira, Paula; Moreira, André F.; Correia, I.J.Bone is a mineralized tissue with the intrinsic capacity for constant remodeling. Rapid prototyping techniques, using biomaterials that mimic the bone native matrix, have been used to develop osteoinductive and osteogenic personalized 3D structures, which can be further combined with drug delivery and phototherapy. Herein, a Fab@Home 3D Plotter printer was used to promote the layer-by-layer deposition of a composite mixture of gelatin, chitosan, tricalcium phosphate, and reduced graphene oxide (rGO). The phototherapeutic potential of the new NIR-responsive 3D_rGO scaffolds was assessed by comparing scaffolds with different rGO concentrations (1, 2, and 4 mg/mL). The data obtained show that the rGO incorporation confers to the scaffolds the capacity to interact with NIR light and induce a hyperthermy effect, with a maximum temperature increase of 16.7 °C after under NIR irradiation (10 min). Also, the increase in the rGO content improved the hydrophilicity and mechanical resistance of the scaffolds, particularly in the 3D_rGO4. Furthermore, the rGO could confer an NIR-triggered antibacterial effect to the 3D scaffolds, without compromising the osteoblasts' proliferation and viability. In general, the obtained data support the development of 3D_rGO for being applied as temporary scaffolds supporting the new bone tissue formation and avoiding the establishment of bacterial infections.
- Reduced graphene oxide-enriched chitosan hydrogel/cellulose acetate-based nanofibers application in mild hyperthermia and skin regenerationPublication . Graça, Mariana F. P.; Melo, Bruna L.; Sousa, Rita Lima; Ferreira, Paula; Moreira, André; Correia, I.J.Asymmetric wound dressings have captured researchers' attention due to their ability to reproduce the structural and functional properties of the skin layers. Furthermore, recent studies also report the benefits of using near infrared (NIR) radiation-activated photothermal therapies in treating infections and chronic wounds. Herein, a chitosan (CS) and reduced graphene oxide (rGO) hydrogel (CS_rGO) was combined with a polycaprolactone (PCL) and cellulose acetate (CA) electrospun membrane (PCL_CA) to create a new NIR-responsive asymmetric wound dressing. The rGO incorporation in the hydrogel increased the NIR absorption capacity and allowed a mild hyperthermy effect, a temperature increase of 12.4 ◦C when irradiated with a NIR laser. Moreover, the PCL_CA membrane presented a low porosity and hydrophobic nature, whereas the CS_rGO hydrogel showed the ability to provide a moist environment, prevent exudate accumulation and allow gaseous exchanges. Furthermore, the in vitro data demonstrate the capacity of the asymmetric structure to act as a barrier against bacteria penetration as well as mediating a NIR-triggered antibacterial effect. Additionally, human fibroblasts were able to adhere and proliferate in the CS_rGO hydrogel, even under NIR laser irradiation, presenting cellular viabilities superior to 90 %. Altogether, our data support the application of the NIR-responsive asymmetric wound dressings for skin regeneration.
- Functionalization and photocuring of an L-lactic acid macromer for biomedical applicationsPublication . Marques, Dina; Santos, João; Ferreira, Paula; Correia, Tiago R.; Correia, Ilídio Joaquim Sobreira; Gil, Maria; Baptista, Cristina Maria dos Santos GaudêncioL-lactic acid was the starting material for obtaining bioahesives. Reaction with 1,4-butanediol provided a telechelic lactic acid prepolymer with hydroxyl end groups further functionalized with 2-isocyanatoethyl methacrylate. Films were produced upon UV irradiation, 2 min, after addition of Irgacure 2959. This was a solvent and catalyst free process. Thermal characterization of films confirmed stability at physiological temperature, enabling photocuring. Adhesion properties were assessed with good results. In vitro degradation tests showed moderate hydrolytic instability dependent on thickness. SEM images revealed a uniform and compact structure. Thrombosis tests confirmed the materials’ thrombogenicity while biocompatibility experiments showed fibroblast viability and antimicrobial behavior.
- Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhanced breast cancer phototherapyPublication . Melo, Bruna L.; Sousa, Rita Lima; Alves, Cátia; Ferreira, Paula; Moreira, André; Correia, I.J.; Diogo, Duarte de MeloAim: Enhance the colloidal stability and photothermal capacity of graphene oxide (GO) by functionalizing it with sulfobetaine methacrylate (SBMA)-grafted bovine serum albumin (BSA; i.e., SBMA-g-BSA) and by loading IR780, respectively. Materials & methods: SBMA-g-BSA coating and IR780 loading into GO was achieved through a simple sonication process. Results: SBMA-g-BSA-functionalized GO (SBMA-BSA/GO) presented an adequate size distribution and cytocompatibility. When in contact with biologically relevant media, the size of the SBMA-BSA/GO only increased by 8%. By loading IR780 into SBMA-BSA/GO, its photothermal capacity increased by twofold. The combination of near infrared light with SBMA-BSA/GO did not induce photocytotoxicity on breast cancer cells. In contrast, the interaction of IR780-loaded SBMA-BSA/GO with near infrared light caused the ablation of cancer cells. Conclusion: IR780-loaded SBMA-BSA/GO displayed an improved colloidal stability and phototherapeutic capacity.
- Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineeringPublication . Coimbra, Patrícia; Santos, Patrícia; Alves, Patrícia; Miguel, Sónia P.; Carvalho, Marco António Paulo de; Sá, Kevin; Correia, Ilídio Joaquim Sobreira; Ferreira, PaulaCoaxial electrospinning is a technique that allows the production of nanofibers with a core–shell structure. Such fibers present several advantages as materials for the preparation of scaffolds, namely due to the possibility of combining a core with the desired mechanical properties with a shell prepared from biocompatible materials that will establish proper interactions with the host. Herein, core-shell fibrous meshes, composed of a polycaprolactone (PCL) core and a functionalized gelatin shell, were prepared by coaxial electrospinning and then photocrosslinked under UV light aiming to be used in vascular tissue regeneration. The suitability of the meshes for the pretended biomedical application was evaluated by assessing their chemical/physical properties as well as their haemo and biocompatibility in vitro. The obtained results revealed that meshes’ shell prepared with a higher content of gelatin showed fibers with diameters presenting a unimodal distribution and a mean value of 600 nm. Moreover, those fibers with higher content of gelatin also displayed lower water contact angles, and therefore higher hydrophilicities. Such features are crucial for the good biologic performance displayed by these meshes, when in contact with blood and with Normal Human Dermal Fibroblasts cells.
- Preparation of functionalized poly(caprolactone diol)/castor oils blends to be applied as photocrosslinkable tissue adhesivesPublication . Cernadas, Maria Teresa; Morgado, Stacy; Alves, Patrícia; Gonçalves, Filipa A. M. M.; Correia, T.R.; Correia, I.J.; Ferreira, PaulaPolycaprolactone (PCL) and PCL-based materials are widely applied in the biomedical field, however, their slow biodegradation profile makes them more suitable to be used in hard tissues, where healing requires longer periods of time. In order to adjust their properties to suit for soft tissues applications, PCL can be blended with other biodegradable materials in order to tune its degradation rate. Herein, polymeric blends of PCL and castor oil (CO) were prepared after their chemical modification with 2-isocyanatoethylmethacrylate (IEMA) in order to be applied as photocrosslinkable tissue adhesives. These functionalized macromers were chemically characterized and used to prepare polymeric blends (PCL-IEMA/CO-IEMA) with variable mass proportions. A biocompatible photoinitiator (Irgacure 2959) was added to these macromers blends which were then irradiated under UV light. The feasibility of the prepared materials as tissue adhesives was evaluated by assessment of their chemical/physical properties as well as their interaction with blood. Moreover, their cytotoxic profile was also evaluated through in vitro studies using human dermal fibroblasts as model cells.
- Functionalization of polydimethylsiloxane membranes to be used in the production of voice prosthesesPublication . Ferreira, Paula; Carvalho, Álvaro; Correia, Tiago R.; Antunes, Bernardo Paiva; Correia, Ilídio Joaquim Sobreira; Alves, PatríciaThe voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis) can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS). This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, SylgardTM 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the material's biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface.
- Photocrosslinkable electrospun fiber meshes for tissue engineering applicationsPublication . Ferreira, Paula; Santos, Patrícia; Alves, P.; Carvalho, Marco António Paulo de; Sá, Kevin; Miguel, Sónia P.; Correia, Ilídio Joaquim Sobreira; Coimbra, Patrícia Manuela AlmeidaElectrospun polymeric meshes are known to exhibit promising properties for the regeneration of several soft tissues. Herein, electrospun polymeric meshes were prepared from blends of polycaprolactone and functionalized gelatin. The meshes were then photocrosslinked under UV light using Irgacure® 2959 as the photoinitiator, aiming to improve membranes’ stability in biological fluids. Moreover, meshes suitability to be used as vascular grafts was evaluated by characterizing their chemical/physical properties as well as their haemo and biocompatibility in vitro. The obtained results show that the blended polymeric meshes are biodegradable and those with a higher content of gelatin display a lower water contact angle. Blood compatibility studies showed that the photocrosslinked membranes are haemocompatible, i.e. they display low values of thrombogenicity and do not trigger any haemolytic effect. Also, Normal Human Dermal Fibroblasts cells were incubated in the presence of the produced membranes and they were able to adhere and proliferate, thus revealing the biocompatibility of the photocrosslinked meshes.
- IR780 loaded gelatin‐PEG coated gold core silica shell nanorods for cancer‐targeted photothermal/photodynamic therapyPublication . Gonçalves, Ariana; Rodrigues, Ana Carolina Félix; Fernandes, Natanael; Diogo, Duarte de Melo; Ferreira, Paula; Moreira, André F.; Correia, I.J.Gold core silica shell (AuMSS) nanorods present excellent physicochemical proper-ties that allow their application as photothermal and drug delivery agents. Herein,AuMSS nanorods were dual‐functionalized with Polyethylene glycol methyl ether(PEG‐CH3) and Gelatin (GEL) to enhance both the colloidal stability and uptake byHeLa cancer cells. Additionally, the AuMSS nanorods were combined for the firsttime with IR780 (a heptamethine cyanine molecule) and its photothermal and pho-todynamic capacities were determined. The obtained results reveal that the en-capsulation of IR780 (65 μg per AuMSS mg) increases the photothermal conversionefficiency of AuMSS nanorods by 10%, and this enhanced heat generation wasmaintained even after three irradiation cycles with a NIR (808 nm) laser. Moreover,the IR780‐loaded AuMSS/T‐PEG‐CH3/T‐GEL presented≈2‐times higher uptake inHeLa cells, when compared to the non‐coated counterparts, and successfullymediated the light‐triggered generation of reactive oxygen species. Overall, thecombination of photodynamic and photothermal therapy mediated by IR780‐loadedAuMSS/T‐PEG‐CH3/T‐GEL nanorods effectively promoted the ablation of HeLacancer cells.
