Repository logo
 
Loading...
Profile Picture
Person

Keinanen-Toivola, Minna

Search Results

Now showing 1 - 2 of 2
  • Anti-microbial coating innovations to prevent infectious diseases (AMiCI): Cost action ca15114
    Publication . Dunne, Colum; Keinanen-Toivola, Minna; Kahru, Anne; Teunissen, Birgit; Ölmez, Hülya; Gouveia, Isabel C.; Melo, Luis F.; Murzyn, Kazimierz; Modic, Martina; Ahonen, Merja; Askew, Pete; Papadopoulos, Theofilos; Adlhart, Christian; Crijns, Francy
    Worldwide, millions of patients are affected annually by healthcare-associated infection (HCAI), impacting up to 80,000 patients in European Hospitals on any given day. This represents not only public health risk, but also an economic burden. Complementing routine hand hygiene practices, cleaning and disinfection, antimicrobial coatings hold promise based, in essence, on the application of materials and chemicals with persistent bactericidal or -static properties onto surfaces or in textiles used in healthcare environments. The focus of considerable commercial investment and academic research energies, such antimicrobial coating-based approaches are widely believed to have potential in reduction of microbial numbers on surfaces in clinical settings. This belief exists despite definitive evidence as to their efficacy and is based somewhat on positive studies involving, for example, copper, silver or gold ions, titanium or organosilane, albeit under laboratory conditions. The literature describes successful delay and/or prevention of recontamination following conventional cleaning and disinfection by problematic microbes such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), among others. However, there is a scarcity of studies assessing antimicrobial surfaces other than copper in the clinical environment, and a complete lack of published data regarding the successful implementation of these materials on clinically significant outcomes (including HCAI). Through its Cooperation in Science and Technology program (COST), the European Commission has funded a 4-year initiative to establish a network of stakeholders involved in development, regulation and use of novel anti-microbial coatings for prevention of HCAI. The network (AMiCI) comprises participants of more than 60 universities, research institutes and companies across 29 European countries and, to-date, represents the most comprehensive consortium targeting use of these emergent technologies in healthcare settings. More specifically, the network will prioritise coordinated research on the effects (both positive and negative) of antimicrobial coatings in healthcare sectors; know-how regarding availability and mechanisms of action of (nano)-coatings; possible adverse effects of such materials (e.g., potential emergence of microbial resistance or emission of toxic agents into the environment); standardised performance assessments for antimicrobial coatings; identification and dissemination of best practices by hospitals, other clinical facilities, regulators and manufacturers.
  • Surface modifications for antimicrobial effects in the healthcare setting: a critical overview
    Publication . Adlhart, Christian; Verran, J.; Azevedo, Nuno Filipe; Olmez, H.; Keinanen-Toivola, Minna; Gouveia, Isabel C.; Melo, Luis; Crijns, F.
    The spread of infections in healthcare environments is a persistent and growing problem in most countries, aggravated by the development of microbial resistance to antibiotics and disinfectants. In addition to indwelling medical devices (e.g. implants, catheters), such infections may also result from adhesion of microbes either to external solid-water interfaces such as shower caps, taps, drains, etc., or to external solid-gas interfaces such as door handles, clothes, curtains, computer keyboards, etc. The latter are the main focus of the present work, where an overview of antimicrobial coatings for such applications is presented. This review addresses well-established and novel methodologies, including chemical and physical functional modification of surfaces to reduce microbial contamination, as well as the potential risks associated with the implementation of such anticontamination measures. Different chemistry-based approaches are discussed, for instance anti-adhesive surfaces (e.g. superhydrophobic, zwitterions), contact-killing surfaces (e.g. polymer brushes, phages), and biocide-releasing surfaces (e.g. triggered release, quorum sensing-based systems). The review also assesses the impact of topographical modifications at distinct dimensions (micrometre and nanometre orders of magnitude) and the importance of applying safe-by-design criteria (e.g. toxicity, contribution for unwanted acquisition of antimicrobial resistance, long-term stability) when developing and implementing antimicrobial surfaces.