Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Layer-by-Layer Deposition of Antibacterial Polyelectrolytes on Cotton FibresPublication . Gomes, Ana; Mano, João F.; Queiroz, João; Gouveia, Isabel C.The introduction of molecules with biological properties on textile materials is essential for a number of biotechnological applications. With the purpose of testing new processes applied to textiles, in this study, we present the first results on the feasibility of using the Layerby-Layer (LbL) deposition process in natural fibers such as cotton, with natural polyelectrolytes like chitosan (CH) and alginic acid sodium salt (ALG), the durability of CH/ALG multilayer on cotton were evaluated. The increase of negative charges to the substrate cotton was made with NaBr and TEMPO, to ensure the success of the process of LbL. Three characterization methods to assess electrostatic LbL deposition were performed: the contact angle between a liquid (water) and the sample surface, in order to characterize the wettability of the samples with the different layers of CH and ALG; dyeing of the CH/ALG assembled cotton fabric with cationic methylene blue that shows regular changes in terms of color depth (K/S value), which indicate that the surface were alternately deposited with CH and ALG layers and, finally, the analysis by infrared spectroscopy using Fourier Transform with Attenuated Total Reflection (ATR-FTIR), to assess the changes in the interaction between CH and ALG deposited on cotton samples.
- New garment proposal for prevention of spreading Gram-negative bacteria resistant to carbapenem antibiotic class under hospital settingsPublication . Nogueira, Frederico; Gomes, Ana; Gouveia, Isabel C.Sensitive skin diseases, including atopic dermatitis, skin inflammation and bedsores, leave patients vulnerable under hospital setting. It is important for the development of a hospital gown with ‘‘soft hand’’ properties and at the same time as a protector against nosocomial infections. Klebsiella pneumoniae has developed resistance to antibiotics in the carbapenem antibiotic class, known as carbapenem-resistant K. pneumoniae (CRKP). CRKP is resistant to nearly all antibiotics and can kill up to 50% of infected patients. This work consisted in the development of a washable recycled silk fibroin-based gown covalently linked with an amino acid L-Cysteine(L-Cys), focused on prevention of K. pneumoniae establishment, proliferation and spreading to community, for use under hospital settings. With the growing problem of resistance to antibiotics and few new therapies on the horizon, gowns adsorbed with L-Cys show to function as a barrier to the establishment and proliferation of microorganisms, providing user protection from infectious disease. This gown was knitted at a rectilinear needle loom with a Jersey knit structure. Then it was cross-linked with L-Cys, subjected to laundry, and subsequently characterized by energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, contact angle, free energy of adhesion, scanning electron microscopy and transmission electron microscopy. Results presented a bactericidal effect against K. pneumoniae of 94.92% after three rinses and 88.88% after five washing cycles, with the few adhered bacteria with an altered and compromised morphology.
- Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textilesPublication . Gomes, Ana; Mano, João F.; Queiroz, João; Gouveia, Isabel C.In recent years, there has been an increase of infectious diseases caused by different microorganisms and the development of antibiotic resistance. In this way, the search for new and efficient antibacterial materials is imperative. The main polysaccharides currently used in the biomedical and pharmaceutical domains are chitin and its derivative chitosan (CH) and alginates (ALG). In this study, a simple technique of Layer by Layer (LbL) of applying polycation CH and polyanion ALG was used to prepare CH/ALG multilayers on cotton samples via the electrostatic assembly with success. The CH/ALG cotton samples (functionalized) were investigated for their antibacterial properties towards Staphylococcus aureus and Klebsiella pneumonia using the international standard method JIS L 1902:2002. The antibacterial activity of the functionalized samples was tested in terms of bacteriostatic and bactericidal activity, and results showed that the samples exhibited a bacteriostatic effect on the two bacteria tested, as expected. In addition, samples with five layers (CH/ALG/CH/ALG/CH) were more effective in inhibiting bacterial growth. This new coating for cellulosic fibers is a new strategy and may open new avenues for the development of antimicrobial polymers with potential application in health-care field.
- Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applicationsPublication . Gomes, Ana; Mano, João F.; Queiroz, João; Gouveia, Isabel C.A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log-6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.